Numerical analysis of trajectories in a Cassinian ion trap of second order with trap door ion inlet

2021 ◽  
Vol 27 (1) ◽  
pp. 3-12
Author(s):  
Bjoern Raupers ◽  
Hana Medhat ◽  
Juergen Grotemeyer ◽  
Frank Gunzer

Ion traps like the Orbitrap are well known mass analyzers with very high resolving power. This resolving power is achieved with help of ions orbiting around an inner electrode for long time, in general up to a few seconds, since the mass signal is obtained by calculating the Fourier Transform of the induced signal caused by the ion motion. A similar principle is applied in the Cassinian Ion Trap of second order, where the ions move in a periodic pattern in-between two inner electrodes. The Cassinian ion trap has the potential to offer mass resolving power comparable to the Orbitrap with advantages regarding the experimental implementation. In this paper we have investigated the details of the ion motion analyzing experimental data and the results of different numerical methods, with focus on increasing the resolving power by increasing the oscillation frequency for ions in a high field ion trap. In this context the influence of the trap door, a tunnel through which the ions are injected into the trap, on the ion velocity becomes especially important.

1959 ◽  
Vol 14 (9) ◽  
pp. 822-827 ◽  
Author(s):  
H. A. Tasman ◽  
A. J. H. Boerboom ◽  
H. Wachsmuth

In previous papers 1.2we presented the radial second order imaging properties of inhomogeneous magnetic sector fields with normal incidence and exit at plane boundaries. These fields may provide very high mass resolving power and mass dispersion without increase in radius or decrease of slit widths. In the present paper the calculations are extended to include the effect of oblique incidence and exit at curved boundaries. The influence of the fringing fields on axial focusing when the boundaries are oblique, is accounted for. It is shown that the second order angular aberration may Le eliminated by appropriate curvature of the boundaries.


2016 ◽  
Vol 88 (23) ◽  
pp. 11429-11435 ◽  
Author(s):  
Lukáš Najdekr ◽  
David Friedecký ◽  
Ralf Tautenhahn ◽  
Tomáš Pluskal ◽  
Junhua Wang ◽  
...  

2000 ◽  
Vol 194 (2-3) ◽  
pp. 225-234 ◽  
Author(s):  
Carsten Weil ◽  
J.Mitchell Wells ◽  
H Wollnik ◽  
R.Graham Cooks

2008 ◽  
Vol 14 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Yang Zhou ◽  
Christopher Booth-Morrison ◽  
David N. Seidman

AbstractThe effects of varying the pulse energy of a picosecond laser used in the pulsed-laser atom-probe (PLAP) tomography of an as-quenched Ni-6.5 Al-9.5 Cr at.% alloy are assessed based on the quality of the mass spectra and the compositional accuracy of the technique. Compared to pulsed-voltage atom-probe tomography, PLAP tomography improves mass resolving power, decreases noise levels, and improves compositional accuracy. Experimental evidence suggests that Ni2+, Al2+, and Cr2+ ions are formed primarily by a thermally activated evaporation process, and not by post-ionization of the ions in the 1+ charge state. An analysis of the detected noise levels reveals that for properly chosen instrument parameters, there is no significant steady-state heating of the Ni-6.5 Al-9.5 Cr at.% tips during PLAP tomography.


2003 ◽  
Vol 230 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Won-Wook Lee ◽  
Soon-Ki Min ◽  
Cha-Hwan Oh ◽  
Pill-Soo Kim ◽  
Seok-Ho Song ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Chang-Min Kwak ◽  
Young-Tae Kim ◽  
Chan-Gyung Park ◽  
Jae-Bok Seol

AbstractTwo challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of “capping” and “stepwise APT with TEM,” is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.


Sign in / Sign up

Export Citation Format

Share Document