scholarly journals Serious Antimicrobial Resistance Status of Pathogens Causing Hospital-acquired Lower Respiratory Tract Infections in North China

2009 ◽  
Vol 37 (3) ◽  
pp. 899-907 ◽  
Author(s):  
Y Wang ◽  
R Zhang ◽  
W Li ◽  
Y Feng ◽  
T Leng

Antimicrobial resistance patterns of pathogens causing hospital-acquired lower respiratory tract infections (LRTIs) in Shandong Province, China were investigated using data collected from January 2002 to December 2006. A total of 10337 isolates were characterized in sputum samples from 39 920 LRTI patients: 68.72% were Gram-negative bacteria, 20.65% were Gram-positive bacteria, and 10.62% were fungi. Organisms most frequently isolated were: Pseudomonas aeruginosa (16.88%), Klebsiella pneumoniae (10.80%), Escherichia coli (10.71%), fungi (10.62%), Staphylococcus aureus (9.68%) and Acinetobacter baumannii (9.03%). Imipenem was the most effective antibiotic against Gram-negative bacteria. Most Gram-positive bacteria were susceptible to vancomycin. Susceptibility to cephalosporins was not optimal and resistance to fluoroquinolones was high. Resistance of Gram-negative bacteria showed a rapid increase over the study period, while resistance of Gram-positive bacteria remained relatively stable. The emergence of resistance to commonly prescribed antimicrobial agents used against LRTI pathogens has compounded the problem of using empirical therapy and created selective pressure on physicians to use certain antibiotics.

2021 ◽  
Vol 22 (4) ◽  
pp. 465-472
Author(s):  
O.A. Thonda ◽  
A.O. Oluduro ◽  
O.O. Adewole ◽  
P.O. Obiajunwa

Background: AmpC or class C or group 1 beta lactamases are class C cephalosporinases that hydrolyse a wide variety of beta-lactam antibiotics including alpha methoxy beta-lactams (cefoxitin), narrow and broad spectrum cephalosporins. This study was conducted to characterize plasmid-mediated AmpC producing enteric Gram- negative bacteria from patients with lower respiratory tract infections in Obafemi Awolowo University Teaching Hospital Complex (OAUTHC) Ile Ife, Osun State, NigeriaMethodology: A total of 149 patients with clinical features of lower respiratory tract infections (LRTI) were selected by simple random sampling for the study. All Gram-negative isolates recovered from standard microbiological cultures of respiratory specimens of these patients were tested against cefoxitin, third generation cephalosporins (3GCs), and other antibiotics using the disc diffusion AST method, and also screened for production of AmpC beta-lactamases phenotypically by the CLSI method. Plasmid DNA extraction was carried out on twenty-nine cefoxitin-resistant selected isolates using the Kado and Lin method, while genotypic detection of plasmid-mediated AmpC gene was carried out by the polymerase chain reaction (PCR) assay.Results: The results showed that 204 (43.3%) of 471 isolates recovered from the 149 selected patients were resistant to 3GC in the AST assay, among which 121 (59.3%) were resistant to cefoxitin, and 189 of the 471 isolates (40.1%) were AmpC producers. The AmpC producers concurrently showed multiple resistance pattern to other antibiotics tested in this study. Ninety six percent of the 29 selected isolates for plasmid analysis contained plasmids, 45% of which amplified positive on PCR for CMY, 38% for FOX, and 31% for ACC types of AmpC genes.Conclusion: This study showed a high degree of antibiotic resistance among enteric Gram-negative bacteria recovered from patients with LRTIs, as well as high degree of plasmid-encoded AmpC genes responsible for this high antibiotic resistance among the isolates. Proper antibiotic policy and regulation are required to limit the spread of plasmid mediated AmpC β-lactamase producing organisms because they can lead to therapeutic failure in infected patients in the nearest future.   French title: Caractérisation phénotypique et génotypique des bêta-lactamases AmpC à médiation plasmidique dans les bactéries entériques Gram-négatives de patients atteints d'infections des voies respiratoires inférieures dans un hôpital tertiaire, sud-ouest du Nigéria Contexte: Les bêta-lactamases AmpC ou de classe C ou de groupe 1 sont des céphalosporinases de classe C qui hydrolysent une grande variété d'antibiotiques bêta-lactamines, y compris les alpha-méthoxy bêta-lactamines (céfoxitine), les céphalosporines à spectre étroit et large. Cette étude a été menée pour caractériser les bactéries à Gram négatif entériques produisant de l'AmpC à médiation plasmidique chez des patients atteints d'infections des voies respiratoires inférieures du complexe hospitalier universitaire d'Obafemi Awolowo (OAUTHC) Ile Ife, État d'Osun, NigériaMéthodologie: Un total de 149 patients présentant des caractéristiques cliniques d'infections des voies respiratoires inférieures (LRTI) ont été sélectionnés par échantillonnage aléatoire simple pour l'étude. Tous les isolats à Gram négatif récupérés à partir de cultures microbiologique standard d'échantillons respiratoires de ces patients ont été testés contre la céfoxitine, les céphalosporines de troisième génération (3GC) et d'autres antibiotiques en utilisant la méthode AST de diffusion sur disque, et également criblés pour la production de bêtalactamases AmpC phénotypiquement par le Méthode CLSI. L'extraction de l'ADN plasmidique a été réalisée sur 29 isolats sélectionnés résistants à la céfoxitine en utilisant la méthode Kado et Lin, tandis que la détection  génotypique du gène AmpC à médiation plasmidique a été réalisée par le test de réaction en chaîne par polymérase (PCR).Résultats: Les résultats ont montré que 204 (43,3%) des 471 isolats récupérés des 149 patients sélectionnés étaient résistants à la 3GC dans le test AST, parmi lesquels 121 (59,3%) étaient résistants à la céfoxitine et 189 des 471 isolats (40,1%) étaient des producteurs d'AmpC. Les producteurs d'AmpC ont montré simultanément plusieurs profils de résistance à d'autres antibiotiques testés dans cette étude. Quatre-vingt-seize pour cent des 29 isolats sélectionnés pour l'analyse des plasmides contenaient des plasmides, dont 45%  amplifiés positifs par PCR pour CMY, 38% pour FOX et 31% pour les types ACC des gènes AmpC.Conclusion: Cette étude a montré un degré élevé de résistance aux antibiotiques parmi les bactéries entériques Gram-négatives  récupérées chez des patients atteints de LRTI, ainsi qu'un degré élevé de gènes AmpC codés par plasmide responsable de cette résistance élevée aux antibiotiques parmi les isolats. Une politique et une réglementation appropriées en matière d'antibiotiques sont nécessaires pour limiter la propagation des organismes producteurs β-lactamase d'AmpC à médiation plasmidique car ils peuvent conduire à un échec thérapeutique chez les patients infectés dans un avenir proche.  


Author(s):  
Oluwalana T. Oyekale ◽  
Bola O. Ojo ◽  
Damilola E. Oguntunmbi ◽  
Oluwatoyin I. Oyekale

Background: Lower respiratory tract infections (LRTIs) are among the commonest infectious diseases requiring hospitalization. There is an increasing resistance development of bacterial pathogens of LRTIs to the commonly prescribed antibiotics necessitating regular surveillance for these bacteria and their antibiogram. Aim: To identify bacterial pathogens of adult LRTIs, determine their antibiotic susceptibility pattern, and suggest the best empirical treatment of adult LRTIs in the setting. Study Design: Descriptive cross-sectional study. Methods: A total of 194 respiratory samples from 194 consecutive consenting adult in-patient of a Federal Teaching Hospital were processed. Identification of isolated bacteria and antibiotic susceptibility testing of the isolates were carried out following the standard protocol. Results: Bacteria isolation was seen in 52.1% of all specimens, highest isolation rate was from sputum (55.2%). Isolation was higher in males (54.9%) than females (48.1%) but no significant difference was seen (P=0.36). Gram negative bacteria were predominantly isolated (64.4%) and Klebsilla pneumoniae was the most common (33.7%). Eight extended-spectrum beta-lactamase (ESBL) producers and 3 methicillin-resistant Staphylococcus aureus (MRSA) were also detected. All isolates were sensitive to imipenem and meropenem. All MRSAs were sensitive to vancomycin. There was poor sensitivity pattern seen against most antibiotics tested. Conclusion: Gram negative bacteria were the predominant bacterial pathogen isolated, and isolates were resistant to most antibiotics tested, though, all were sensitive to carbapenems. Levofloxacin plus gentamicin, and carbapenems were the suggested first and second line empirical treatment of choice respectively for adult LRTIs in this and similar settings.


2018 ◽  
Vol 159 (1) ◽  
pp. 23-30
Author(s):  
Emese Juhász ◽  
Miklós Iván ◽  
Júlia Pongrácz ◽  
Katalin Kristóf

Abstract: Introduction: Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. Aim: The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Method: Lower respiratory tract samples of 3589 patients collected in a four-year period (2013–2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Results: Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Conclusions: Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23–30.


2015 ◽  
Vol 10 (3) ◽  
pp. 14-22
Author(s):  
S Pant ◽  
KR Bhusal ◽  
S Manandhar

By mistake the wrong PDF was loaded for this article. The correct PDF was loaded on 19th September 2016. OBJECTIVES This study was designed with the objectives of describing the distribution pattern of microorganisms responsible for causing LRTI in the workers of garment industries.MATERIALS AND METHODS A total of 198 cases of suspected person of Lower Respiratory Tract infection (LRTI) LRTI were included in this study. This study was conducted between November 2009 to April 2010. Specimen for the study was expectorated sputum. Gram-stain, Ziehl-Neelsen stains and culture were performed.RESULTS On direct microscopic examination, 20.51% were Gram positive bacteria, 79.48% were Gram negative bacteria and 4% were smear positive AFB. On culture sensitivity examination, 22% percent showed growth of different bacteria in different culture media. The bacteria isolated from the samples included Klebsiella pneumoniae (15.38%), Proteus mirabilis (15.38%) and Citrobacterfruendii (15.38%). Gram Negative bacteria were found most susceptible to Ciprofloxacin (92.30%, 24/26) and Amikacin (92.30%, 24/26). Similarly, Gram Positive bacteria were found most susceptible to Ciprofloxacin (100%, 8/8) followed by Cloxacillin and Cephalexin (87.5%, 7/8). Smear positive AFB was significantly associated with not using the protective measures (mask) by workers and presence of symptoms (cough for more than two weeks, night sweat, hemoptysis and anorexia) (p=0.031). Culture positivity was significantly associated with symptoms like production of purulent sputum (p=0.045).CONCLUSION There was insignificant association between LRTI and risk factors present in working room of garment industries. Most of the isolates were sensitive to Ciprofloxacin and resistance to Ampicillin and Cephalexin.Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 14-22


2021 ◽  
Vol 71 (2) ◽  
pp. 211-218
Author(s):  
Herica Makino ◽  
Alessandra Tammy Hayakawa Ito De Sousa ◽  
Lucas Avelino Dandolini Pavelegini ◽  
Yolanda Paim Arruda Trevisan ◽  
Edson Moleta Colodel ◽  
...  

Abstract Neisseria sp. is a Gram-negative diplococcus bacterium usually present on the mucosal surfaces of animals without causing an obvious pathology. The objective of this study was to report the isolation of Neisseria sp. from severe cases of pyogranulomatous pneumonia with the formation of a Splendore-Hoeppli structure in two cats treated at a veterinary hospital. This paper suggests that the Neisseria genus members may be involved in lower respiratory tract infections in cats, with the molecular diagnosis being a necessary method for the correct identification of this bacteria in animals.


Sign in / Sign up

Export Citation Format

Share Document