A novel T-shaped sensor cluster for acoustic source localization

2021 ◽  
pp. 147592172110042
Author(s):  
Qiang Gao ◽  
Jun Young Jeon ◽  
Gyuhae Park ◽  
Yunde Shen ◽  
Jiawei Xiang

This study proposes a new sensor cluster configuration for localizing an acoustic source in a plate using uniform linear array beamforming and T-shaped sensor clusters. This technique requires neither the properties of the plate material nor a dense array of sensors to find the direction of arrival of the acoustic source. It functions by placing four sensors in a cluster in the shape of the letter “‘T” over a small region of the plate. Uniform linear array beamforming-based source localization is carried out by the constructive interference of different sensor signals. However, this approach has the disadvantage of a very low resolution when the direction of arrival approaches certain values. The L-shaped sensor clusters use the information from the time difference of arrival between the sensors to estimate the direction of arrival, which has a high resolution in all directions except for the direction that is very close to vertical to the cluster. In this study, we numerically and experimentally demonstrate that the proposed T-shaped sensor cluster can accurately localize the acoustic source with no blind area. We also detail its superior performance compared to both uniform linear array beamforming and L-shaped clusters. In the experimental investigation, the maximum deviation of impact source localization was reduced significantly, from 54° to 4° for an aluminum plate, and from 42° to 3° for a composite plate. Furthermore, this novel combined sensor array layout requires only a few sensors, which can significantly reduce the cost of structural health monitoring practice.

Author(s):  
Sanjay Manjunath ◽  
A Anil Kumar ◽  
M Girish Chandra ◽  
Tapas Chakravarty

2021 ◽  
Vol 35 (11) ◽  
pp. 1433-1434
Author(s):  
Sana Khan ◽  
Hassan Sajjad ◽  
Mehmet Ozdemir ◽  
Ercument Arvas

Mutual coupling is compensated in a four element uniform linear receiving array using software defined radios. Direction of arrival (DoA) is estimated in real-time for the array with spacing d=lambda/4. The decoupling matrix was measured using a VNA for only one incident angle. After compensation the error in DoA estimation was reduced to 5%. Comparing the DoA results with d=lambda/2 spaced Uniform Linear Array (ULA), 1.2% error was observed. Although, the experiment was performed indoors with a low SNR, the results show a substantial improvement in the estimated DoA after compensation.


2013 ◽  
Vol 748 ◽  
pp. 634-639 ◽  
Author(s):  
Jian Rong Wang ◽  
Ju Zhang ◽  
Song Gun Hyon ◽  
Jian Guo Wei

In order to locate the sound source based on the microphone uniform linear array and reduce the impact of noise and reflection, improved multiple signal classification algorithm and a kind of weighted average filters be used in this paper. According to the microphone array speech processing characteristics, we improved the traditional multiple signal classification algorithm and designed a kind of weighted average filters. Then, we made the computer simulation experiments. The experimental results show that the location of the sound source is the peak with the highest power in the spatial spectrum. Besides, the frequency domain diagram is more smoothly and the power of the noise and reflection is effectively reduced except sound source through the weighted average processing. Therefore, improved multiple signal classification algorithm can achieve sound source localization based on the microphone uniform linear array. And the impact of the noise and reflection is effectively reduced by processing of the weighted average filters.


Sign in / Sign up

Export Citation Format

Share Document