scholarly journals Blood–brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood–central nervous system interface

2017 ◽  
Vol 242 (17) ◽  
pp. 1669-1678 ◽  
Author(s):  
Duc TT Phan ◽  
R Hugh F Bender ◽  
Jillian W Andrejecsk ◽  
Agua Sobrino ◽  
Stephanie J Hachey ◽  
...  

The blood–brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood–brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer’s disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood–brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood–brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood–brain barrier pathology, recent advances in the development of novel 3D blood–brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood–brain barrier, and provide an outlook on how these blood–brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood–Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer’s disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB – something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.

2004 ◽  
Vol 72 (9) ◽  
pp. 4985-4995 ◽  
Author(s):  
Yun C. Chang ◽  
Monique F. Stins ◽  
Michael J. McCaffery ◽  
Georgina F. Miller ◽  
Dan R. Pare ◽  
...  

ABSTRACT Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and traversal of the BBB. Exposure of human brain microvascular endothelial cells (HBMEC) to C. neoformans triggered the formation of microvillus-like membrane protrusions within 15 to 30 min. Yeast cells of C. neoformans adhered to and were internalized by the HBMEC, and they crossed the HBMEC monolayers via a transcellular pathway without affecting the monolayer integrity. The histopathology of mouse brains obtained after intravenous injection of C. neoformans showed that the yeast cells either were associated with endothelial cells or escaped from the brain capillary vessels into the neuropil by 3 h. C. neoformans was found in the brain parenchyma away from the vessels by 22 h. Association of C. neoformans with the choroid plexus, however, was not detected during up to 10 days of observation. Our findings indicate that C. neoformans cells invade the central nervous system by transcellular crossing of the endothelium of the BBB.


Physiology ◽  
1998 ◽  
Vol 13 (6) ◽  
pp. 287-293 ◽  
Author(s):  
Gerald A. Grant ◽  
N. Joan Abbott ◽  
Damir Janigro

Endothelial cells exposed to inductive central nervous system factors differentiate into a blood-brain barrier phenotype. The blood-brain barrier frequently obstructs the passage of chemotherapeutics into the brain. Tissue culture systems have been developed to reproduce key properties of the intact blood-brain barrier and to allow for testing of mechanisms of transendothelial drug permeation.


2018 ◽  
Vol 62 (1) ◽  
pp. 59-66 ◽  
Author(s):  
I. Širochmanová ◽  
Ľ. Čomor ◽  
E. Káňová ◽  
I. Jiménez-Munguía ◽  
Z. Tkáčová ◽  
...  

Abstract The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents animmense challenge for effective delivery of therapeutics to the central nervous system. Many potential drugs, which are effective at their site of action, have failed due to the lack of distribution in sufficient quantity to the central nervous system (CNS). In consequence, many diseases of the central nervous system remain undertreated. Antibodies, IgG for example, are difficult to deliver to the CNS due to their size (~155 kDa), physico-chemical properties and the presence of Fc receptor on the blood-brain barrier. Smaller antibodies, like the recently developed nanobodies, may overcome the obstacle of the BBB and enter into the CNS. The nanobodies are the smallest available antigen-binding fragments harbouring the full antigenbinding capacity of conventional antibodies. They represent a new generation of therapeutics with exceptional properties, such as: recognition of unique epitopes, target specificity, high affinity, high solubility, high stability and high expression yields in cost-effective recombinant production. Their ability to permeate across the BBBmakes thema promising alternative for central nervous system disease therapeutics. In this review, we have systematically presented different aspects of the BBB, drug delivery mechanisms employed to cross the BBB, and finally nanobodies — a potential therapeutic molecule against neuroinfections.


Sign in / Sign up

Export Citation Format

Share Document