scholarly journals Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat

2008 ◽  
Vol 22 (3) ◽  
pp. 262-278 ◽  
Author(s):  
Y. Cao ◽  
J.S. Shumsky ◽  
M.A. Sabol ◽  
R.A. Kushner ◽  
S. Strittmatter ◽  
...  
2012 ◽  
Vol 218 (2) ◽  
pp. 437-453 ◽  
Author(s):  
Angélica Zepeda ◽  
Andrea Aguilar-Arredondo ◽  
Gabriela Michel ◽  
Laura Elisa Ramos-Languren ◽  
Martha L. Escobar ◽  
...  

1995 ◽  
Vol 73 (6) ◽  
pp. 2596-2601 ◽  
Author(s):  
S. Otani ◽  
J. A. Connor

1. Two independent Schaffer collateral pathways converging to the same pyramidal cell were alternately stimulated by 2-Hz trains (900 pulses) offset by a 150-ms interval in adult rat hippocampal slices. The second input underwent an immediate and persistent long-term depression (LTD). Depression in the first input was smaller than the second input. A narrower interpulse interval (20 ms) failed to induce LTD in either input. 2. Neither the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid nor the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxylphenyl-glycine blocked this associative LTD. However, coapplication of these two antagonists blocked LTD. 3. Associative LTD was blocked by prior injection of the Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid into the postsynaptic cell and by bath-applied L-NG-nitroarginine, a nitric oxide synthesis inhibitor. 4. We propose that temporally confined, asynchronous synaptic activity weakens the efficacy of naive synapses in slices from the adult hippocampus.


2012 ◽  
Vol 108 (7) ◽  
pp. 1988-1998 ◽  
Author(s):  
Kohei Koga ◽  
Su-Eon Sim ◽  
Tao Chen ◽  
Long-Jun Wu ◽  
Bong-Kiun Kaang ◽  
...  

Kainate (KA) receptors are expressed widely in the central nervous system and regulate both excitatory and inhibitory synaptic transmission. KA receptors play important roles in fear memory, anxiety, and pain. However, little is known about their function in synaptic transmission in the insular cortex (IC), a critical region for taste, memory, and pain. Using whole cell patch-clamp recordings, we have shown that KA receptors contribute to fast synaptic transmission in neurons in all layers of the IC. In the presence of the GABAA receptor antagonist picrotoxin, the NMDA receptor antagonist AP-5, and the selective AMPA receptor antagonist GYKI 53655, KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) were revealed. We found that KA EPSCs are ∼5–10% of AMPA/KA EPSCs in all layers of the adult mouse IC. Similar results were found in adult rat IC. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulations at 200 Hz significantly facilitated the summation of KA EPSCs. In addition, genetic deletion of GluK1 or GluK2 subunit partially reduced postsynaptic KA EPSCs, and exposure of GluK2 knockout mice to the selective GluK1 antagonist UBP 302 could significantly reduce the KA EPSCs. These data suggest that both GluK1 and GluK2 play functional roles in the IC. Our study may provide the synaptic basis for the physiology and pathology of KA receptors in the IC-related functions.


2004 ◽  
Vol 365 (2) ◽  
pp. 153-155 ◽  
Author(s):  
Philipp Lirk ◽  
Stefano Longato ◽  
Josef Rieder ◽  
Lars Klimaschewski

2003 ◽  
Vol 88 (3) ◽  
pp. 717-725 ◽  
Author(s):  
Noriko Okuyama ◽  
Norio Takagi ◽  
Takayuki Kawai ◽  
Keiko Miyake-Takagi ◽  
Satoshi Takeo

1996 ◽  
Vol 75 (4) ◽  
pp. 1573-1588 ◽  
Author(s):  
P. A. Salin ◽  
D. A. Prince

1. Spontaneous inhibitory synaptic currents (sIPSCs) were studied with whole cell voltage-clamp recordings from 131 pyramidal cells in adult rat somatosensory cortical slices. Neurons were intracellulary labeled with biocytin and classified as supragranular (SG, layers 2-3), layer IV (IV), or infragranular (IG, layer V) on the basis of the laminar localization of their somata. Somatic areas were similar for SG, IV, and IG neurons. All identified pyramidal cells generated high-frequency gamma-aminobutyric acid (GABAA) receptor-mediated synaptic events. 2. Bath application of bicuculline blocked the sIPSCs and resulted in a decrease of approximately 0.5 nS in resting conductance and an inward shift in baseline current. 3. sIPSC frequency was significantly lower in SG versus IG or IV neurons, and this difference was accounted for by the occurrence of a higher percentage of bursts of sIPSCs in the IG and IV neurons. 4. Bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased the frequency of sIPSCs by 13-21%. By contrast, application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovaleric acid (D-AP5) generally had no effect on spontaneous IPSC frequency, suggesting that AMPA rather than NMDA receptor activation contributed to resting discharge of inhibitory interneurons. 5. Addition of tetrodotoxin (TTX) to the perfusion medium reduced the spontaneous IPSC frequency by approximately 30-55%. The miniature IPSCs (mIPSCs) seen in TTX-containing solutions had a frequency of approximately 10 Hz and an average conductance of 0.42-0.48 nS. 6. The kinetic properties of mIPSCs generated in pyramidal cells of different layers were the same, with the rise times of approximately 0.9 ms and decay time constants of approximately 8 ms at a holding potential of 0 mV. The decay phase of mIPSCs was generally fitted by one exponential and displayed a voltage dependence with an e-fold increase in decay time constant for a every 198-mV depolarization. 7. These results show that there is ongoing spontaneous release of GABA in neocortical slices that gives rise to high-frequency impulse-related and non-impulse-related postsynaptic inhibitory currents. Activation of AMPA receptors on inhibitory interneurons accounts for only a small proportion of the GABAA receptor-mediated events. Judging from the distribution of mIPSC frequencies in neurons of different laminae, there is a relatively uniform distribution of inhibitory synapses throughout the cortex. Tonic activation of GABAA receptors on neocortical pyramidal neurons generates an increase in resting membrane conductance that may play an important role in vivo by preventing the development of hyperexcitability, modulating excitatory synaptic events, and controlling the rate and patterns of spike discharge.


Sign in / Sign up

Export Citation Format

Share Document