scholarly journals Distributed robust H∞ composite-rotating consensus of second-order multi-agent systems

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772251 ◽  
Author(s):  
Weizheng Huang ◽  
Wenfeng Zheng ◽  
Lipo Mo

In this article, the distributed [Formula: see text] composite-rotating consensus problem is concerned for a class of second-order multi-agent systems. First, based on local state feedback and communication feedback, a distributed control algorithm is proposed. Then, sufficient conditions are derived in order to make all agents reach a composite-rotating consensus with the desired [Formula: see text] performance. Finally, the simulations are given to show the effectiveness of the theoretical results.

2018 ◽  
Vol 40 (16) ◽  
pp. 4369-4381 ◽  
Author(s):  
Baojie Zheng ◽  
Xiaowu Mu

The formation-containment control problems of sampled-data second-order multi-agent systems with sampling delay are studied. In this paper, we assume that there exist interactions among leaders and that the leader’s neighbours are only leaders. Firstly, two different control protocols with sampling delay are presented for followers and leaders, respectively. Then, by utilizing the algebraic graph theory and matrix theory, several sufficient conditions are obtained to ensure that the leaders achieve a desired formation and that the states of the followers converge to the convex hull formed by the states of the leaders, i.e. the multi-agent systems achieve formation containment. Furthermore, an explicit expression of the formation position function is derived for each leader. An algorithm is provided to design the gain parameters in the protocols. Finally, a numerical example is given to illustrate the effectiveness of the obtained theoretical results.


2017 ◽  
Vol 40 (5) ◽  
pp. 1521-1528
Author(s):  
Yan Wang ◽  
Hong Zhou ◽  
Zhi-Wei Liu ◽  
Wenshan Hu ◽  
Wei Wang

In this paper, a new kind of intermittent control is proposed to study consensus problems of multi-agent systems with second-order dynamics. In particular, we consider the case that the information transmission occurs at sampling instants and the velocity information is not available for feedback. The proposed control only regulates the velocity of agents in a given sequence of disconnected time intervals, called activated intervals, after sampling instants. Remarkably, both the sampling and activated intervals are not required to be identical. By adopting algebraic graph theory and nonnegative matrix, some sufficient conditions are obtained for guaranteeing the consensus of the multi-agent systems under the switching topology. Finally, the numerical examples are included to illustrate the theoretical results.


2016 ◽  
Vol 40 (2) ◽  
pp. 504-513 ◽  
Author(s):  
Lei Chen ◽  
Kaiyu Qin ◽  
Jiangping Hu

In this paper, we investigate a tracking control problem for second-order multi-agent systems. Here, the leader is self-active and cannot be completely measured by all the followers. The interaction network associated with the leader–follower multi-agent system is described by a jointly connected topology, where the topology switches over time and is not strongly connected during each time subinterval. We consider a consensus control of the multi-agent system with or without time delay and propose two categories of neighbour-based control rules for every agent to track the leader, then provide sufficient conditions to ensure that all agents follow the leader, and meanwhile, the tracking errors can be estimated. Finally, some simulation results are presented to demonstrate our theoretical results.


2017 ◽  
Vol 40 (5) ◽  
pp. 1726-1737 ◽  
Author(s):  
Yulan Gao ◽  
Junyan Yu ◽  
Mei Yu ◽  
Yue Xiao ◽  
Jinliang Shao

This paper investigates a couple-group consensus problem of second-order multi-agent systems with the impact of second-order neighbours’ information. For systems with/without time delays, couple-group consensus criteria are established in the form of linear matrix inequalities by utilizing both model transformation and stability theories. The main results indicate that the group consensus for multi-agent systems under the effect of second-order neighbours’ information can be achieved based on the premise of a generalized balanced couple. Finally, illustrative examples are presented to demonstrate the effectiveness of the theoretical results.


2020 ◽  
Vol 34 (35) ◽  
pp. 2050406
Author(s):  
Yuan Tian ◽  
Chuandong Li

This paper addresses finite-time consensus of second-order nonlinear multi-agent systems with impulsive effects. A control protocol contains neighborhood and self state feedback without sign function is proposed for finite-time consensus. By employing Lyapunov stability theory, a new less conservative estimation of energy function is obtained, by solving which, it gets both finite-time consensus and exponential consensus criteria with or without impulsive effects. Moreover, three impulsive types: stability, divergence and no effects, are divided based on strengths of impulse and controller. Examples are provided to demonstrate the correctness of theoretical results and the effectiveness of the finite-time protocol.


Sign in / Sign up

Export Citation Format

Share Document