scholarly journals Semi-supervised machine learning for primary user emulation attack detection and prevention through core-based analytics for cognitive radio networks

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771986036 ◽  
Author(s):  
Sundar Srinivasan ◽  
KB Shivakumar ◽  
Muazzam Mohammad

Cognitive radio networks are software controlled radios with the ability to allocate and reallocate spectrum depending upon the demand. Although they promise an extremely optimal use of the spectrum, they also bring in the challenges of misuse and attacks. Selfish attacks among other attacks are the most challenging, in which a secondary user or an unauthorized user with unlicensed spectrum pretends to be a primary user by altering the signal characteristics. Proposed methods leverage advancement to efficiently detect and prevent primary user emulation future attack in cognitive radio using machine language techniques. In this paper novel method is proposed to leverage unique methodology which can efficiently handle during various dynamic changes includes varying bandwidth, signature changes etc… performing learning and classification at edge nodes followed by core nodes using deep learning convolution network. The proposed method is compared with that of two other state-of-art machine learning-based attack detection protocols and has found to significantly reduce the false alarm to secondary network, at the same time improve the overall detection accuracy at the primary network.

2021 ◽  
Author(s):  
Olusegun Peter Awe ◽  
Daniel Adebowale Babatunde ◽  
Sangarapillai Lambotharan ◽  
Basil AsSadhan

AbstractWe address the problem of spectrum sensing in decentralized cognitive radio networks using a parametric machine learning method. In particular, to mitigate sensing performance degradation due to the mobility of the secondary users (SUs) in the presence of scatterers, we propose and investigate a classifier that uses a pilot based second order Kalman filter tracker for estimating the slowly varying channel gain between the primary user (PU) transmitter and the mobile SUs. Using the energy measurements at SU terminals as feature vectors, the algorithm is initialized by a K-means clustering algorithm with two centroids corresponding to the active and inactive status of PU transmitter. Under mobility, the centroid corresponding to the active PU status is adapted according to the estimates of the channels given by the Kalman filter and an adaptive K-means clustering technique is used to make classification decisions on the PU activity. Furthermore, to address the possibility that the SU receiver might experience location dependent co-channel interference, we have proposed a quadratic polynomial regression algorithm for estimating the noise plus interference power in the presence of mobility which can be used for adapting the centroid corresponding to inactive PU status. Simulation results demonstrate the efficacy of the proposed algorithm.


2017 ◽  
Vol 30 (18) ◽  
pp. e3371 ◽  
Author(s):  
Kuldeep Yadav ◽  
Binod Prasad ◽  
Abhijit Bhowmick ◽  
Sanjay Dhar Roy ◽  
Sumit Kundu

Sign in / Sign up

Export Citation Format

Share Document