scholarly journals Effect of Fabric Structure and Weft Density on the Poisson's Ratio of Worsted Fabric

2013 ◽  
Vol 8 (2) ◽  
pp. 155892501300800 ◽  
Author(s):  
Nazanin Ezaz Shahabi ◽  
Siamak Saharkhiz ◽  
S. Mohammad Hosseini Varkiyani

This paper investigates the impacts of weave structures and weft density on the Poisson's ratio of worsted fabric under uniaxial extension. In this study nine groups of worsted fabrics comprising of three weave structures (twill 2/2, twill 3/1 and hopsack 2/2), each produced in three different weft densities were examined. Samples were extended in weft direction uniaxially and the Poisson's ratio of fabric in various extensions was measured. Analysis showed that the effect of both weft density and weave structure are significant with no combination effect on the Poisson's ratio. It was found that there is an exponential correlation between warp and weft crimp during fabric extension. For the worsted fabrics used in this research in all three fabric structures, fabrics with higher weft yarn density have higher value of Poisson's ratio. It was also concluded that for the fabrics with the same condition but only different in structures, this ratio is related to the structural firmness of fabric. In all three fabric structures the value of the Poisson's ratio were following the same pattern of twill 2/2, twill 3/1 and hopsack 2/2 from highest to lowest value. It was revealed that there is a high linear correlation between the crimp interchange ratio and Poisson's ratio.

2019 ◽  
Vol 50 (2) ◽  
pp. 149-169
Author(s):  
Asal Lolaki ◽  
Mohsen Shanbeh

Auxetic textiles are defined as textiles with negative Poisson’s ratio. These textiles possess unique properties that render them suitable for special applications. This work aims to investigate the effect of fabric structural parameters such as thread densities, weave design and warp yarn count. Thus, 30 fabric samples were woven at 3 weft and 2 warp densities, respectively. Two warp counts and three weave designs of plain, basket 3/3 and weft-backed satin 6 were used. The samples were uniaxially loaded in weft direction and dimensional changes at various strains levels were evaluated. The evaluation was carried out using the image processing technique based on MATLAB software. The weft yarns used were found to exhibit auxetic behavior at the whole spectrum of the strain level used. The least weft yarn Poisson’s ratio was found to be −0.9. It was established that in general the fabric samples exhibit auxetic effect within the stated range of strain. Additionally, it was concluded that while fabric thread densities together with warp count influence the minimum fabric Poisson's ratio, auxetic behavior of the samples is not dependent on weave design alone. Rather, it was illustrated that the combined effect of weave design in association with stated structural parameters on auxetic feature cannot be ignored.


2017 ◽  
Vol 88 (24) ◽  
pp. 2810-2824 ◽  
Author(s):  
Ning Jiang ◽  
Hong Hu

Textile structures with negative Poisson’s ratio (PR) behavior are called auxetic textile structures. They have received increasing attention in recent years and have been designed and fabricated through spinning, knitting, weaving and non-woven methods. However, auxetic textile structures fabricated using braiding method have not been reported so far. This paper reported a novel type of auxetic braided structure based on a helical structural arrangement. The geometry of the structure and its deformation mechanism were first introduced and described. Then a special manufacturing process was developed by the modification of commonly used tubular braiding technology. Various auxetic braids were fabricated with different structural parameters and yarns and tested under uniaxial extension conditions. The results showed that all manufactured braids exhibited high negative PR behavior and maintained this behavior until the fracture of the component wrap yarn. Among three structural parameters discussed, namely wrap angle, braiding angle and braiding yarn diameter, the wrap angle had more effects on the tensile properties of auxetic braided structure than the other two parameters. The success of fabricating auxetic braids with commercially available yarns in this study provides an alternative way to manufacture auxetics from positive PR materials.


2016 ◽  
Vol 55 ◽  
pp. 143-151 ◽  
Author(s):  
Dimitrios Vavlekas ◽  
Mahmoud Ansari ◽  
Han Hao ◽  
Flavien Fremy ◽  
Jessica L. McCoy ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 2278-2281 ◽  
Author(s):  
Hua Zhou ◽  
Chun Yan Wang ◽  
Jiu Zhou

Weft-all-coloring jacquard fabric is smoother and plentiful. It looks stereoscopic impression. Because of complex fabric structures, color designing of jacquard fabric still remains a problem to be solved. In addition, there have not ideal colorful model to predict jacquard fabric structure. In view of the above problems, this study use four primary samples that red, yellow, green are used in weft yarn and white is used in warp to prepare many weft-all-coloring jacquard fabric of single-warp and double-weft. Though a large number of experimental color about a data-color 600 plus spectrophotometric, the theory of Kubelka-Munk absorption coefficients (K) and scattering coefficients (S) of all yarns and the color proportion of weft were calculated for jacquard fabric. The results indicate that the color difference is 1.5 CIELAB units, and the fitting error of the yarn’s proportion is about 2.1%. It shows that the two-constant Kubelka-Munk theory is suitable for predicting the color of weft jacquard fabric with all-coloring and color proportion.


2010 ◽  
Vol 22 (2/3) ◽  
pp. 79-87 ◽  
Author(s):  
Pranut Potiyaraj ◽  
Chutipak Subhakalin ◽  
Benchaphon Sawangharsub ◽  
Werasak Udomkichdecha

PurposeThe purpose of this paper is to develop a computerized program that can recognize woven fabric structures and simultaneously use the obtained data to 3D re‐visualize the corresponding woven fabric structures.Design/methodology/approachA 2D bitmap image of woven fabric was initially acquired using an ordinary desktop flatbed scanner. Through several image‐processing and analysis techniques as well as recognition algorithms, the weave pattern was then identified and stored in a digital format. The weave pattern data were then used to construct warp and weft yarn paths based on Peirce's geometrical model.FindingsBy combining relevant weave parameters, including yarn sizes, warp and weft densities, yarn colours as well as cross‐sectional shapes, a 3D image of yarns assembled together as a woven fabric structure is produced and shown on a screen through the virtual reality modelling language browser.Originality/valueWoven fabric structures can now be recognised and simultaneously use the obtained data to 3D re‐visualize the corresponding woven fabric structures.


Author(s):  
Yajie Gao ◽  
Xiaogang Chen

AbstractThe paper presents a study on woven fabrics made of helical auxetic yarns (HAYs) and their key factors on Poisson’s ratio under tension. The work aims to create and evaluate auxetic woven fabrics with optimal parameters for achieving better auxeticity including weave structure, wrapping angle of the auxetic yarn, thickness of the auxetic yarn and properties of the warp yarn. The maximum negative Poisson’s ratio (NPR) of the woven fabric can be achieved as low as -2.92 for experiments. Then, a numerical study has been carried out as well to assist the development of auxetic woven fabrics. The findings of this paper showed longer float length, lower wrapping angle of the auxetic yarn, a thinner diameter of the auxetic yarn as well as lower tensile modulus of the warp yarn led to higher auxetic behaviour. This can also provide a reference for researchers to select the best parameters for producing the auxetic woven fabrics.


Sign in / Sign up

Export Citation Format

Share Document