scholarly journals Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes

2017 ◽  
Vol 9 (5) ◽  
pp. 168781401769976 ◽  
Author(s):  
Mahesh S Shinde ◽  
Kishor M Ashtankar
2019 ◽  
Vol 9 (20) ◽  
pp. 4341 ◽  
Author(s):  
Chen-Yuan Chung

Plastic lenses are light and can be mass-produced. Large-diameter aspheric plastic lenses play a substantial role in the optical industry. Injection molding is a popular technology for plastic optical manufacturing because it can achieve a high production rate. Highly efficient cooling channels are required for obtaining a uniform temperature distribution in mold cavities. With the recent advent of laser additive manufacturing, highly efficient three-dimensional spiral channels can be realized for conformal cooling technique. However, the design of conformal cooling channels is very complex and requires optimization analyses. In this study, finite element analysis is combined with a gradient-based algorithm and robust genetic algorithm to determine the optimum layout of cooling channels. According to the simulation results, the use of conformal cooling channels can reduce the surface temperature difference of the melt, ejection time, and warpage. Moreover, the optimal process parameters (such as melt temperature, mold temperature, filling time, and packing time) obtained from the design of experiments improved the fringe pattern and eliminated the local variation of birefringence. Thus, this study indicates how the optical properties of plastic lenses can be improved. The major contribution of present proposed methods can be applied to a mold core containing the conformal cooling channels by metal additive manufacturing.


2015 ◽  
Vol 2 (10) ◽  
pp. 4838-4846 ◽  
Author(s):  
Ramona Hölker ◽  
Matthias Haase ◽  
Nooman Ben Khalifa ◽  
A. Erman Tekkaya

Author(s):  
Tong Wu ◽  
Andres Tovar

Additive manufacturing allows the fabrication parts and tools of high complexity. This capability challenges traditional guidelines in the design of conformal cooling systems in heat exchangers, injection molds, and other parts and tools. Innovative design methods, such as network-based approaches, lattice structures, and structural topology optimization have been used to generate complex and highly efficient cooling systems; however, methods that incorporate coupled thermal and fluid analysis remain scarce. This paper introduces a coupled thermal-fluid topology optimization algorithm for the design of conformal cooling channels. With this method, the channel position problem is replaced to a material distribution problem. The material distribution directly depends on the effect of flow resistance, heat conduction, as well as forced and natural convection. The problem is formulated based on a coupling of Navier-Stokes equations and convection-diffusion equation. The problem is solved by gradient-based optimization after analytical sensitivity derived using the adjoint method. The algorithm leads a two -dimensional conceptual design having optimal heat transfer and balanced flow. The conceptual design is converted to three-dimensional channels and mapped to a morphological surface conformal to the injected part. The method is applied to design an optimal conformal cooling for a real three dimensional injection mold. The feasibility of the final designs is verified through simulations. The final designs can be exported as both three-dimensional graphic and surface mesh CAD format, bringing the manufacture department the convenience to run the tool path for final fitting.


2021 ◽  
Vol 114 (1-2) ◽  
pp. 107-116
Author(s):  
Andreas Kirchheim ◽  
Yogeshkumar Katrodiya ◽  
Livia Zumofen ◽  
Frank Ehrig ◽  
Curdin Wick

AbstractTo achieve a certain visual quality or acceptable surface appearance in injection-molded components, a higher mold surface temperature is needed. In order to achieve this, injection molds can be dynamically tempered by integrating an active heating and cooling process inside the mold halves. This heating and cooling of the mold halves becomes more efficient when the temperature change occurs closer to the mold surface. Complex channels that carry cold or hot liquids can be manufactured close to the mold surface by using the layer by layer principle of additive manufacturing. Laser powder bed fusion (L-PBF), as an additive manufacturing process, has special advantages; in particular, so-called hybrid tools can be manufactured. For example, complex tool inserts with conformal cooling channels can be additively built on simple, machined baseplates. This paper outlines the thermal simulation carried out to optimize the injection molding process by use of dynamic conformal cooling. Based on the results of this simulation, a mold with conformal cooling channels was designed and additively manufactured in maraging steel (1.2709) and then experimentally tested.


2018 ◽  
Vol 24 (8) ◽  
pp. 1347-1364 ◽  
Author(s):  
Mahesh S. Shinde ◽  
Kishor Mahadeorao Ashtankar ◽  
Abhaykumar M. Kuthe ◽  
Sandeep W. Dahake ◽  
Mahesh B. Mawale

Purpose This review paper aims to provide an overview of applications of direct rapid manufacturing assisted mold with conformal cooling channels (CCCs) and shows the potential of this technique in different manufacturing processes. Design/methodology/approach Key publications from the past two decades have been reviewed. Findings This study concludes that direct rapid manufacturing technique plays a dominant role in the manufacturing of mold with complicated CCC structure which helps to improve the quality of final part and productivity. The outcome based on literature review and case study strongly suggested that in the near future direct rapid manufacturing method might become standard procedure in various manufacturing processes for fabrication of complex CCCs in the mold. Practical implications Advanced techniques such as computer-aided design, computer-aided engineering simulation and direct rapid manufacturing made it possible to easily fabricate the effective CCC in the mold in various manufacturing processes. Originality/value This paper is beneficial to study the direct rapid manufacturing technique for development of the mold with CCC and its applications in different manufacturing processes.


Author(s):  
Shaohua Han ◽  
Zhongzhong Zhang ◽  
Pengxiang Ruan ◽  
Shiwen Cheng ◽  
Dingqi Xue

Additive manufacturing has been proven to be a promising technology for fabricating high-performance dies, molds, and conformal cooling channels. As one of the manufacturing methods, wire and arc additive manufacturing displays unique advantages of low cost and high deposition rate that are better than other high energy beam-based ones. This paper presents a preliminary study of fabricating integrated cooling channels by CMT-based wire and arc additive manufacturing process. The deposition strategies for fabricating circular cross-sectional cooling channels both in conformal and straight-line patterns have been investigated. It included optimizing the welding torch angle, fabricating the enclosed semicircle structure and predicting the collision between the torch and constructed part. The cooling effect test was also conducted on both the conformal cooling channel and straight-line cooling channel. The results affirmed a higher cooling efficiency and better uniform cooling effect of the conformal cooling channel than straight-line cooling channel.


Sign in / Sign up

Export Citation Format

Share Document