scholarly journals Combining accident modeling and quantitative risk assessment in safety management

2017 ◽  
Vol 9 (10) ◽  
pp. 168781401772600 ◽  
Author(s):  
Liqiong Chen ◽  
Xia Li ◽  
Tao Cui ◽  
Jianlin Ma ◽  
Hong Liu ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huyen Thi Thu Do ◽  
Tram Thi Bich Ly ◽  
Tho Tien Do

Abstract In this study, a combination of semi-quantitative risk assessment, composite indicator and fuzzy logic has been developed to identify industrial establishments and processes that represent potential environmental accidents associated with hazardous chemicals. The proposed method takes into consideration the root causes of risk probability of hazardous chemical accidents (HCAs), such as unsafe onsite storing and usage, inadequate operation training, poor safety management and analysis, equipment failure, and factors affected by the potential consequences of the accidents, including human health, water resources, and building and construction. These issues have been aggregated in a system of criteria and sub-criteria, demonstrated by a list of non-overlapping and exhaustive categorical terms. Semi-quantitative risk assessment is then applied to develop a framework for screening industrial establishments that exhibit potential HCAs. Fuzzy set theory with triangular fuzzy number deals with the uncertainty associated with the data input and reduces the influence of subjectivity and vagueness to the final results. The proposed method was tested among 77 industrial establishments located within the industrial zones of Ho Chi Minh City, Vietnam. Eighteen establishments were categorized as high HCA risk, 36 establishments were categorized as medium HCA risk, and 23 ones were of low HCA risk. The results are compatible with the practical chemical safety situation of the establishments and are consistent with expert evaluation.


2020 ◽  
Vol 42 (11) ◽  
pp. 548-557
Author(s):  
Eun Sung Baek ◽  
Kyoshik Park

Objectives : In order to conduct the quantitative risk assessment for hazardous chemical storage facilities at the tank terminal in the port area, the entire risk assessment process was performed in according to the guidances of the Korea Ministry of Environment.Methods : The risk of the facility was derived by the worst-case scenario, alternative scenario, and then evaluated by KORA program. The countermeasures of the risk were suggested by the concept of LOPA.Results and Discussion : Focusing on the worst case scenario and alternative scenario among the scenario having effet to offsite, risk can be reduced to satisfy regulation by applying measures of passive, active, and managerial.Conclusions : According to the result of risk assessment on benzene storage tank and tank lorry when port construction, the amount of storage inside the tank has a significant impact on the offsite. It is necessary to organize the risk of benzene, and comprehensive management of tank terminal storage facilities.


Author(s):  
Peter Tuft ◽  
Nader Yoosef-Ghodsi ◽  
John Bertram

The Australian pipeline design code AS 2885 is largely a risk-based standard, and its safety management study process is admirably suited to the needs of the Australian industry. However it is a unique process that has been developed in Australia and is not used anywhere else in the world. Successfully benchmarking it against other risk assessment methodologies would put the basis of the Australian approach on a footing that would be more difficult to challenge should a major pipeline disaster result in a public enquiry. And if the comparison reveals shortcomings in the AS 2885 process then there will be a sound basis for addressing those shortcomings to improve the process. The APIA Research and Standards Committee and the Energy Pipelines CRC commissioned studies to compare the AS 2885 SMS process against two alternative methods: • Reliability-based analysis. • Quantitative risk assessment based on historical failure rates. Each study looked at the same four pipeline segments spanning a variety of urban locations in which the consequences of a major pipeline failure would be very serious. Each of the four segments had previously been through the AS 2885 safety management study process and found to present a level of risk that was borderline tolerable. The objective of the studies was to determine whether the alternative risk assessment methods also found a level of risk that was similarly borderline tolerable. This paper will present the results of the comparison studies, showing that all three methods produce broadly similar outcomes for risks that are close to the borderline between tolerable and intolerable. This is a welcome endorsement of the AS 2885 SMS process and reinforces its validity as a method for assessing and managing pipeline safety.


2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

1997 ◽  
Vol 35 (11-12) ◽  
pp. 29-34 ◽  
Author(s):  
P. Teunis ◽  
A. Havelaar ◽  
J. Vliegenthart ◽  
G. Roessink

Shellfish are frequently contaminated by Campylobacter spp, presumably originating from faeces from gulls feeding in the growing or relaying waters. The possible health effects of eating contaminated shellfish were estimated by quantitative risk assessment. A paucity of data was encountered necessitating many assumptions to complete the risk estimate. The level of Campylobacter spp in shellfish meat was calculated on the basis of a five-tube, single dilution MPN and was strongly season-dependent. The contamination level of mussels (<1/g) appeared to be higher than in oysters. The usual steaming process of mussels was found to completely inactivate Campylobacter spp so that risks are restricted to raw/undercooked shellfish. Consumption data were estimated on the basis of the usual size of a portion of raw shellfish and the weight of meat/individual animal. Using these data, season-dependent dose-distributions could be estimated. The dominant species in Dutch shellfish is C. lari but little is known on its infectivity for man. As a worst case assumption, it was assumed that the infectivity was similar to C. jejuni. A published dose-response model for Campylobacter-infection of volunteers is available but with considerable uncertainty in the low dose region. Using Monte Carlo simulation, risk estimates were constructed. The consumption of a single portion of raw shellfish resulted in a risk of infection of 5–20% for mussels (depending on season; 95% CI 0.01–60%). Repeated (e.g. monthly) exposures throughout a year resulted in an infection risk of 60% (95% CI 7–99%). Risks for oysters were slightly lower than for mussels. It can be concluded that, under the assumptions made, the risk of infection with Campylobacter spp by eating of raw shellfish is substantial. Quantitative risk estimates are highly demanding for the availability and quality of experimental data, and many research needs were identified.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Pete Burnap ◽  
Omar Santos

AbstractThe Internet-of-Things (IoT) triggers data protection questions and new types of cyber risks. Cyber risk regulations for the IoT, however, are still in their infancy. This is concerning, because companies integrating IoT devices and services need to perform a self-assessment of its IoT cyber security posture. At present, there are no self-assessment methods for quantifying IoT cyber risk posture. It is considered that IoT represent a complex system with too many uncontrollable risk states for quantitative risk assessment. To enable quantitative risk assessment of uncontrollable risk states in complex and coupled IoT systems, a new epistemological equation is designed and tested though comparative and empirical analysis. The comparative analysis is conducted on national digital strategies, followed by an empirical analysis of cyber risk assessment approaches. The results from the analysis present the current and a target state for IoT systems, followed by a transformation roadmap, describing how IoT systems can achieve the target state with a new epistemological analysis model. The new epistemological analysis approach enables the assessment of uncontrollable risk states in complex IoT systems—which begin to resemble artificial intelligence—and can be used for a quantitative self-assessment of IoT cyber risk posture.


Sign in / Sign up

Export Citation Format

Share Document