scholarly journals Combining semi-quantitative risk assessment, composite indicator and fuzzy logic for evaluation of hazardous chemical accidents

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huyen Thi Thu Do ◽  
Tram Thi Bich Ly ◽  
Tho Tien Do

Abstract In this study, a combination of semi-quantitative risk assessment, composite indicator and fuzzy logic has been developed to identify industrial establishments and processes that represent potential environmental accidents associated with hazardous chemicals. The proposed method takes into consideration the root causes of risk probability of hazardous chemical accidents (HCAs), such as unsafe onsite storing and usage, inadequate operation training, poor safety management and analysis, equipment failure, and factors affected by the potential consequences of the accidents, including human health, water resources, and building and construction. These issues have been aggregated in a system of criteria and sub-criteria, demonstrated by a list of non-overlapping and exhaustive categorical terms. Semi-quantitative risk assessment is then applied to develop a framework for screening industrial establishments that exhibit potential HCAs. Fuzzy set theory with triangular fuzzy number deals with the uncertainty associated with the data input and reduces the influence of subjectivity and vagueness to the final results. The proposed method was tested among 77 industrial establishments located within the industrial zones of Ho Chi Minh City, Vietnam. Eighteen establishments were categorized as high HCA risk, 36 establishments were categorized as medium HCA risk, and 23 ones were of low HCA risk. The results are compatible with the practical chemical safety situation of the establishments and are consistent with expert evaluation.

Kybernetes ◽  
2019 ◽  
Vol 49 (3) ◽  
pp. 916-937
Author(s):  
Chao Ren ◽  
Xiaoxing Liu ◽  
Zongqing Zhang

Purpose The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment. Design/methodology/approach This paper introduces an extended safety and critical effect analysis (SCEA) method, which takes the weight of each industry in a network into risk assessment. Furthermore, expert experience and fuzzy logic are introduced for the evaluation of other parameters. Findings The proposed approach not only develops weight as the fifth parameter in quantitative risk assessment but also applies the interval type-2 fuzzy sets to depict the uncertainty in the risk evaluation process. The risk rating of each parameter excluding weight is determined by using the interval type-2 fuzzy numbers. The risk magnitude of each industry in the network is quantified by the extended SCEA method. Research limitations/implications There is less study in quantitative risk assessment in the industrial network. Additionally, fuzzy logic and expert experience are expressed in the presented approach. Moreover, different parameters can be determined by different weights in network risk assessment in the future study. Originality/value The extended SCEA method presents a new way to measure risk magnitude for industrial networks. The industrial network is developed in risk quantification by assessing weights of nodes as a parameter into the extended SCEA. The interval type-2 fuzzy number is introduced to model the uncertainty of risk assessment and to express the risk evaluation information from experts.


Author(s):  
Petr Trávníček ◽  
Luboš Kotek ◽  
Tomáš Koutný ◽  
Tomáš Vítěz

Biogas plants are a specific facility from the QRA (Quantitative Risk Assessment) methodologies' point of view, especially in the case of the determination of the event frequency of accident scenarios for biogas leakage from a gas holder and subsequent initiation. QRA methodologies determine event frequencies for different types of accident events related to vessels made of steel. Gas holders installed at biogas plants are predominantly made of other materials and are often integrated with the fermenter. It is therefore a specific type of gas holder, differing from that which is commonly used in the chemical industry. In addition, long-term experience is not available for the operation of biogas plants, unlike in the chemical industry. The event frequencies listed in the QRA methodologies are not relevant for the risk assessment of biogas plants. This work is focused on setting the prerequisites for QRA of biogas storage, including for example: information on hazardous chemical substances occurring at biogas plants, their classification, and information on the construction of integrated gas holders. For the purpose of the work, a scenario was applied where the greatest damage (to life or property) is expected. This scenario is the leakage of the total volume of hazardous gas substance from the gas holder and subsequent initiation. Based on this information, a "tree" was processed for "Fault Tree Analysis" (FTA), and frequencies were estimated for each event. Thereafter, an "Event Tree Analysis" was carried out. This work follows up on a discussion by experts on the determination of scenario frequencies for biogas plants that was conducted in the past.


2018 ◽  
Vol 10 (8) ◽  
pp. 2935 ◽  
Author(s):  
Laijun Zhao ◽  
Ying Qian ◽  
Qing-Mi Hu ◽  
Ran Jiang ◽  
Meiting Li ◽  
...  

From the perspective of characteristics and causes, probability and forecast, and safety management evaluation, this paper analyzes 3974 hazardous chemical casualty accidents that occurred between 2006 and 2017 in China. The trends, monthly and hourly distributions, lifecycles, chemical and accident types, and the direct and indirect causes of casualty accidents are analyzed first. To estimate the probability of casualty accidents, the Poisson regression model is employed. The time series model is developed to forecast the number of casualty accidents. The safety management of hazardous chemicals is evaluated based on an inverted U-shaped curve that fits the relationship between the number of casualty accidents and petrochemical industry outputs. Moreover, measures for improving the safety management of hazardous chemicals are provided based on the analysis, forecast, and evaluation. The results show that the probability of 200–600 casualty accidents occurring per year in China is 59.10%. Sixteen of thirty provinces are identified as having better safety management with regard to hazardous chemicals.


Author(s):  
Byungtae Yoo ◽  
Sang D. Choi

Despite improvements in chemical safety management systems, incidents involving the release of hazardous chemicals continue to happen. In some cases, they result in the evacuation of residents. For hazardous chemical release accidents, an evacuation plan needs to be selective enough to consider both the indoor and outdoor concentrations of nearby buildings and the time in which the maximum allowable concentration may occur. In this study, a real-time risk analysis tool was developed based on the geographic information system (GIS) in order to establish the emergency response and risk communication plan for effectively assisting decision-making personnel. A selective evacuation plan was also established by a proposed assessment module considering the indoor/outdoor pollution concentration of buildings and the release duration time of chlorine gas leakage. The GIS-based simulated modules were performed based on eleven buildings of Ulsan city, located near an industrial cluster and home to a high population density. As a result of the simulated real-time risk assessment, only four buildings were affected by chlorine gas concentration according to wind direction and diffusion time. In addition, it was considered effective to establish an indoor/outdoor evacuation plan as opposed to an outdoor evacuation plan which is outside the range of the damage. Subsequently, an emergency evacuation plan was established with the concentration of a hazardous chemical according to the decision-making matrix. This study can enlighten the real-time emergency risk assessment based on GIS while effectively supporting the emergency action plans in response to the release of hazardous chemicals in clustered plants and the community.


2017 ◽  
Vol 9 (10) ◽  
pp. 168781401772600 ◽  
Author(s):  
Liqiong Chen ◽  
Xia Li ◽  
Tao Cui ◽  
Jianlin Ma ◽  
Hong Liu ◽  
...  

2020 ◽  
Vol 42 (11) ◽  
pp. 548-557
Author(s):  
Eun Sung Baek ◽  
Kyoshik Park

Objectives : In order to conduct the quantitative risk assessment for hazardous chemical storage facilities at the tank terminal in the port area, the entire risk assessment process was performed in according to the guidances of the Korea Ministry of Environment.Methods : The risk of the facility was derived by the worst-case scenario, alternative scenario, and then evaluated by KORA program. The countermeasures of the risk were suggested by the concept of LOPA.Results and Discussion : Focusing on the worst case scenario and alternative scenario among the scenario having effet to offsite, risk can be reduced to satisfy regulation by applying measures of passive, active, and managerial.Conclusions : According to the result of risk assessment on benzene storage tank and tank lorry when port construction, the amount of storage inside the tank has a significant impact on the offsite. It is necessary to organize the risk of benzene, and comprehensive management of tank terminal storage facilities.


Author(s):  
Peter Tuft ◽  
Nader Yoosef-Ghodsi ◽  
John Bertram

The Australian pipeline design code AS 2885 is largely a risk-based standard, and its safety management study process is admirably suited to the needs of the Australian industry. However it is a unique process that has been developed in Australia and is not used anywhere else in the world. Successfully benchmarking it against other risk assessment methodologies would put the basis of the Australian approach on a footing that would be more difficult to challenge should a major pipeline disaster result in a public enquiry. And if the comparison reveals shortcomings in the AS 2885 process then there will be a sound basis for addressing those shortcomings to improve the process. The APIA Research and Standards Committee and the Energy Pipelines CRC commissioned studies to compare the AS 2885 SMS process against two alternative methods: • Reliability-based analysis. • Quantitative risk assessment based on historical failure rates. Each study looked at the same four pipeline segments spanning a variety of urban locations in which the consequences of a major pipeline failure would be very serious. Each of the four segments had previously been through the AS 2885 safety management study process and found to present a level of risk that was borderline tolerable. The objective of the studies was to determine whether the alternative risk assessment methods also found a level of risk that was similarly borderline tolerable. This paper will present the results of the comparison studies, showing that all three methods produce broadly similar outcomes for risks that are close to the borderline between tolerable and intolerable. This is a welcome endorsement of the AS 2885 SMS process and reinforces its validity as a method for assessing and managing pipeline safety.


2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document