scholarly journals Configuration synthesis of electric-drive transmissions for tracked vehicles

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774966
Author(s):  
Ming-Fei Gao ◽  
Ji-Bin Hu ◽  
Zeng-Xiong Peng

This article focus on the configuration synthesis of electric-drive transmissions for tracked vehicles. First, a new graph theory model is proposed to represent the transmission mechanism, which makes the complex transmission system easier to understand. Second, a configuration synthesis method is proposed based on kinematics and statics, in which the speed degree of freedom and torque degree of freedom are considered as the constraints of configuration synthesis. Also, the expressions for speed degree of freedom and torque degree of freedom are derived. Third, based on the graph theory model, the necessary condition to achieve skid steering in the transmission of tracked vehicles is obtained. The results of this article can provides a theoretical basis for the design and analysis of transmission mechanism of tracked vehicles.

Author(s):  
Xueliang Li ◽  
Zhihang Wu ◽  
Shujun Yang ◽  
Jibin Hu ◽  
Zengxiong Peng

The rapid development of dual-clutch transmission (DCT) and hybrid and purely electric vehicles stimulate the researches on multi-input fixed shaft gear transmission mechanisms. The multiple degree-of-freedom (DOF) transmission mechanism can achieve a wider range of speed ratio adjustment and more modes under certain space and weight constraints, which is an ideal choice for multi gear transmission. In this paper, a synthesis method of fixed shaft gear transmission configuration is proposed. Based on the established graph theory model, kinematic characteristics of the fixed shaft gear transmission configuration are studied and the shift sequence is determined. Using these characteristics, a derivation method from the basic configuration to the comprehensive gears and shafts configuration is proposed. Multiple parameters such as the synchronizer arrangement and speed ratios are optimized. Finally, the proposed method is vigorously verified by a seven-speed DCT with four DOFs. This method is comprehensive and systematic in designing fixed shaft gear transmission configurations, which can be applied to DCT, transmissions for parallel hybrid electric vehicles, and to some novel multi-input transmissions.


2021 ◽  
Vol 491 ◽  
pp. 229546
Author(s):  
Ruofan Zhang ◽  
Bowen Yang ◽  
Zhifang Shao ◽  
Daijun Yang ◽  
Pingwen Ming ◽  
...  

2018 ◽  
Vol 121 ◽  
pp. 563-582 ◽  
Author(s):  
Chuang Shi ◽  
Hongwei Guo ◽  
Meng Li ◽  
Rongqiang Liu ◽  
Zongquan Deng

2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


Author(s):  
Guochao Bai ◽  
Shimin Wei ◽  
Duanling Li ◽  
Qizheng Liao ◽  
Xianwen Kong

A polygon-scaling mechanism is a single DOF (degree-of-freedom) mechanism for scaling a polygon. This paper presents a tetragon-elements based synthesis method of polygon-scaling mechanisms. According to movable conditions of radial scaling elements, four basic tetragon elements (rhombus element, parallelogram element, kite element and general tetragon element) are proposed. For a given polygon, these four types of elements can be selected based on the characteristics of target polygons to construct polygon-scaling mechanisms in a straightforward manner. Using this synthesis method, some planar 1-DOF scaling mechanisms are obtained with the characteristics of retracting and deploying. Their 3D models are also presented to proof the validity of the proposed method. Finally, a table of tetragon elements with the characteristics of their associated polygon-scaling mechanisms is summarized using which polygon-scaling mechanisms can be easily constructed.


2014 ◽  
Vol 592-594 ◽  
pp. 1165-1169
Author(s):  
Preeti Gulia ◽  
V.P. Singh

The present work is focused on the graph theory which is used for structural analysis of kinematic chain and identification of degree of freedom. A method based on graph theory is proposed in this paper to solve structural problems by using a suitable example of fourteen links kinematic chain. Purpose of this paper is to give an easy and reliable method for structural analysis of fourteen links kinematic chain. Here, a simple incidence matrix is used to represent the kinematic chain. The proposed method is applied for determining the characteristic polynomial equation of fourteen links kinematic chain. An algebraic test based on graph theory is also used for identifying degree of freedom of kinematic chain whether it is total, partial or fractionated degree of freedom.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Qunzhang Tu ◽  
Xiaochen Zhang ◽  
Ming Pan ◽  
Chengming Jiang ◽  
Jinhong Xue

This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge) of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization) is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation) platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. V. D. Rao ◽  
A. C. Rao

New planetary gear trains (PGTs) are generated using graph theory. A geared kinematic chain is converted to a graph and a graph in turn is algebraically represented by a vertex-vertex adjacency matrix. Checking for isomorphism needs to be an integral part of the enumeration process of PGTs. Hamming matrix is written from the adjacency matrix, using a set of rules, which is adequate to detect isomorphism in PGTs. The present work presents the twin objectives of testing for isomorphism and compactness using the Hamming matrices and moment matrices.


2000 ◽  
Vol 122 (2) ◽  
pp. 194-200 ◽  
Author(s):  
P. A. Simionescu ◽  
M. R. Smith

Based on recent results concerning the occurrence of function cognates in Watt II linkages, it is shown that only 3 geometric parameters are sufficient for defining the kinematic function of simplified planar rack-and-pinion steering linkages. The steering performances of the mechanisms are analytically expressed in terms of these parameters and, by employing an optimization-based synthesis method involving increasing the degree of freedom of the mechanism, the optimum domains are determined. The parameter sets corresponding to these minimum steering error domains are displayed in design charts. These charts aid the automotive engineer in the early stages of conceiving a new steering linkage by providing initial estimates of the basic geometry of the mechanism. They also provide information on two other characteristics of concern, i.e. the minimum pressure angle occurring in the joints and the rack stroke required for maximum turn of the wheels. [S1050-0472(00)00402-5]


Sign in / Sign up

Export Citation Format

Share Document