scholarly journals Influence of magnetic field on double convection problem of fractional viscous fluid over an exponentially moving vertical plate: New trends of Caputo time-fractional derivative model

2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986038 ◽  
Author(s):  
Nehad Ali Shah ◽  
Ilyas Khan ◽  
Maryam Aleem ◽  
MA Imran

In this article, the influence of a magnetic field is studied on a generalized viscous fluid model with double convection, due to simultaneous effects of heat and mass transfer induced by temperature and concentration gradients. The fluid is considered over an exponentially accelerated vertical plate with time-dependent boundary conditions. Additional effects of heat generation and chemical reaction are also considered. A generalized viscous fluid model consists of three partial differential equations of momentum, heat, and mass transfer with corresponding initial and boundary condition. The idea of non-integer order Caputo time-fractional derivatives is used, and exact solutions for velocity, temperature, and concentration in terms of Wright function and function of Lorenzo–Hartley are developed for ordinary cases. Graphical analysis of flow and fractional parameters is made by using computational software MathCad, and discussed. The results obtained are also in good agreement with the published results from the literature. As a result, it is found that temperature and fluid velocity can be enhanced for smaller values of fractional parameters.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 373
Author(s):  
Shahanaz Parvin ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Norihan Md Arifin ◽  
Fadzilah Md Ali

The development of the mathematical modeling of Casson fluid flow and heat and mass transfer is presented in this paper. The model is subjected to the following physical parameters: shrinking parameter, mixed convection, concentration buoyancy ratio parameter, Soret number, and Dufour number. This model is also subjected to the inclined magnetic field and shrinking sheet at a certain angle projected from the y- and x-axes, respectively. The MATLAB bvp4c program is the main mathematical program that was used to obtain the final numerical solutions for the reduced ordinary differential equations (ODEs). These ODEs originate from the governing partial differential equations (PDEs), where the transformation can be achieved by applying similarity transformations. The MATLAB bvp4c program was also implemented to develop stability analysis, where this calculation was executed to recognize the most stable numerical solution. Numerical graphics were made for the skin friction coefficient, local Nusselt number, local Sherwood number, velocity profile, temperature profile, and concentration profile for certain values of the physical parameters. It is found that all the governed parameters affected the variations of the Casson fluid flow, heat transfer, mass transfer, and the profiles of velocity, temperature, and concentration. In addition, a stable solution can be applied to predict the impact of physical parameters on the actual fluid model by using a mathematical fluid model.


2020 ◽  
Vol 17 (1) ◽  
pp. 51-66
Author(s):  
A. P. Baitharu ◽  
Sachidananda Sahoo ◽  
G. C. Dash

A study on heat and mass transfer of a steady laminar boundary layer flow of an electrically conducting fluid of second grade in a porous medium subject to a uniform magnetic field past a semi-infinite stretching sheet with power law surface temperature or power law surface heat flux. The variations in fluid velocity, fluid temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in tabular form for various values of the pertinent flow parameters. The asymptotic expansions of the solutions for large Prandtl number are also given for the two heating conditions. The temperature distribution decreases with the increase in thermal radiation parameter in case of PST and PHF. The rate of mass transfer at the solid surface increases in the presence of magnetic field and decreases with heavier diffusing species.  


2018 ◽  
Vol 49 (8) ◽  
pp. 747-760 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
M. Ali Abbas ◽  
M. M. Rashidi

Sign in / Sign up

Export Citation Format

Share Document