scholarly journals Methodology for the navigation optimization of a terrain-adaptive unmanned ground vehicle

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775272 ◽  
Author(s):  
Eduardo Corral Abad ◽  
Jesús Meneses Alonso ◽  
María Jesús Gómez García ◽  
Juan Carlos García-Prada

The goal of this article is to design a navigation algorithm to improve the capabilities of an all-terrain unmanned ground vehicle by optimizing its configuration (the angles between its legs and its body) for a given track profile function. The track profile function can be defined either by numerical equations or by points. The angles between the body and the legs can be varied in order to improve the adaptation to the ground profiles. A new dynamic model of an all-terrain vehicle for unstructured environments has been presented. The model is based on a half-vehicle and a quasi-static approach and relates the dynamic variables of interest for navigation with the topology of the mechanism. The algorithm has been created using a simple equation system. This is an advantage over other algorithms with more complex equations which need more time to be calculated. Additionally, it is possible to optimize to any ground-track-profile of any terrain. In order to prove the soundness of the algorithm developed, some results of different applications have been presented.

2015 ◽  
Vol 220-221 ◽  
pp. 774-780 ◽  
Author(s):  
Eduardo Corral ◽  
Gennady Aryassov ◽  
Jesús Meneses

The aim of this work is to improve the navigation capabilities of an off-road unmanned ground vehicle (UGV) by optimizing the angles between its legs and its body (its configuration angles), as the vehicle travels by a particular track profile. We present a numerical program based on a quasi-static half vehicle model. For a profile entered by the user, the program will be able to calculate how the angles between the legs and the body must vary along the trajectory, so that to maintain the torque on the wheels as constant as possible. Results may be helpful in vehicle control tasks, in particular when passing obstacles efficiently.First of all, some considerations concerning the nomenclature and geometry of the vehicle are presented. Then, the kinematics of the vehicle is exposed starting from the function that defines the profile. We focus on the position and/or trajectories of remarkable points to be employed later. From the kinematics, the quasi-static model is developed and the equations to calculate the forces and torques involved are presented. The algorithm basically calculates the position along the track and the angles between the legs and the body and then, by using the previous equations, finds the optimal values of those angles that satisfy a given condition (as equal to normal forces, torque constancy, minimum torque, etc.)As results, we present the configuration angles that equal to the normal forces on the wheels when the vehicle ascends a ramp, depending on the slope. We also present the optimal configuration angles variation required for the vehicle to pass over a step obstacle. And for a complex profile how the torque changes in function of the angles between the legs.


2010 ◽  
Vol 164 ◽  
pp. 405-410 ◽  
Author(s):  
Raivo Sell ◽  
Priit Leomar

The paper deals with route planning and message exchange platform development for unmanned vehicle systems like Unmanned Ground Vehicle (UGV) and Unmanned Aerial Vehicle (UAV). Existing solutions for both types of vehicles are discussed and analyzed. Based on existing solution an unified concept is introduced. In this paper we present the study where the universal navigation algorithm planning platform is developed aiming to provide common platform for different unmanned mobile robotic systems. The platform is independent from the application and the target software. The navigation and action planning activity is brought to the abstract layer and specific interfaces are used to produce the target oriented code, describing two different test platforms are presented and co-operation scenarios.


2022 ◽  
Vol 12 (1) ◽  
pp. 525
Author(s):  
Yasuhiro Fukuoka ◽  
Kazuyuki Oshino ◽  
Ahmad Najmuddin Ibrahim

We propose a mechanical design for a simple teleoperated unmanned ground vehicle (UGV) to negotiate uneven terrain. UGVs are typically classified into legged, legged-wheeled, wheeled, and tanked forms. Legged vehicles can significantly shift their center of gravity (COG) by positioning their multi-articulated legs at appropriate trajectories, stepping over a high obstacle. To realize a COG movable mechanism with a small number of joints, a number of UGVs have been developed that can shift their COG by moving a mass at a high position above the body. However, these tend to pose a risk of overturning, and the mass must be moved quite far to climb a high step. To address these issues, we design a novel COG shift mechanism, in which the COG can be shifted forward and backward inside the body by moving most of its internal devices. Since this movable mass includes DC motors for driving both tracks, we can extend the range of the COG movement. We demonstrate that a conventional tracked vehicle prototype can traverse a step and a gap between two steps, as well as climb stairs and a steep slope, with a human operating the vehicle movement and the movable mass position.


ROBOT ◽  
2013 ◽  
Vol 35 (6) ◽  
pp. 657 ◽  
Author(s):  
Taoyi ZHANG ◽  
Tianmiao WANG ◽  
Yao WU ◽  
Qiteng ZHAO

Author(s):  
Prajot P. Kulkarni ◽  
Shubham R. Kutre ◽  
Shravan S. Muchandi ◽  
Pournima Patil ◽  
Shankargoud Patil

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Liang ◽  
Honglun Wang ◽  
Haitao Luo

The UAV/UGV heterogeneous system combines the air superiority of UAV (unmanned aerial vehicle) and the ground superiority of UGV (unmanned ground vehicle). The system can complete a series of complex tasks and one of them is pursuit-evasion decision, so a collaborative strategy of UAV/UGV heterogeneous system is proposed to derive a pursuit-evasion game in complex three-dimensional (3D) polygonal environment, which is large enough but with boundary. Firstly, the system and task hypothesis are introduced. Then, an improved boundary value problem (BVP) is used to unify the terrain data of decision and path planning. Under the condition that the evader knows the position of collaborative pursuers at any time but pursuers just have a line-of-sight view, a worst case is analyzed and the strategy between the evader and pursuers is studied. According to the state of evader, the strategy of collaborative pursuers is discussed in three situations: evader is in the visual field of pursuers, evader just disappears from the visual field of pursuers, and the position of evader is completely unknown to pursuers. The simulation results show that the strategy does not guarantee that the pursuers will win the game in complex 3D polygonal environment, but it is optimal in the worst case.


Sign in / Sign up

Export Citation Format

Share Document