scholarly journals Backstepping active disturbance rejection control for trajectory tracking of underactuated autonomous underwater vehicles with position error constraint

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090963
Author(s):  
Tianqi Xie ◽  
Ye Li ◽  
Yanqing Jiang ◽  
Li An ◽  
Haowei Wu

In this article, the three-dimensional trajectory tracking control of an autonomous underwater vehicle is addressed. The vehicle is assumed to be underactuated and the system parameters and the external disturbances are unknown. First, the five degrees of freedom kinematics and dynamics model of underactuated autonomous underwater vehicle are acquired. Following this, reduced-order linear extended state observers are designed to estimate and compensate for the uncertainties that exist in the model and the external disturbances. A backstepping active disturbance rejection control method is designed with the help of a time-varying barrier Lyapunov function to constrain the position tracking error. Furthermore, the controller system can be proved to be stable by employing the Lyapunov stability theory. Finally, the simulation and comparative analyses demonstrate the usefulness and robustness of the proposed controller in the presence of internal parameter uncertainties and external time-varying disturbances.

Author(s):  
Mohammed Ali ◽  
Charles K. Alexander

The tracking performance of a robot manipulator is controlled using nonlinear active disturbance rejection control (ADRC). The proposed method does not require the complete knowledge of the plant’s parameters, and external disturbances since it is based on the rejection and estimation of the unknown internal dynamics and external disturbances. The proposed method is simple and has minimal tuning parameters. The robustness of the proposed method is discussed against parameter uncertainties and disturbances. First, the mathematical model of the manipulator is developed. ADRC theory is explained. The manipulator is represented in ADRC form. ADRC’s tracking performance for the joints and end-effector is compared to the tracking performance of the robust passivity (RP) control. The simulations prove that the proposed control method achieves good tracking performance compared to RP control. It is shown that ADRC has a lower energy consumption compared to RP control by calculating the power in the input signals.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989153
Author(s):  
Zhengzheng Zhang ◽  
Bingyou Liu ◽  
Lichao Wang

Large fluctuation, large overshoot, and uncertain external disturbance that occur when an autonomous underwater vehicle is in deep motion are difficult to address using the traditional control method. An optimal control strategy based on an improved active disturbance rejection control technology is proposed to enhance the trajectory tracking accuracy of autonomous underwater vehicles in actual bathymetric operations and resist external and internal disturbances. First, the depth motion and mathematical models of an autonomous underwater vehicle and propeller are established, respectively. Second, the control rate of the extended state observer and the nonlinear error feedback of the traditional active disturbance rejection control are improved by using a new nonlinear function. The nonlinearity, model uncertainty, and external disturbance of the autonomous underwater vehicle depth control system are extended to a new state, which is realized by an improved extended state observer. Third, the improved nonlinear state error feedback is used to suppress residual errors and provide high-quality control for the system. Simulation and experimental results show that under the same parameters, the traditional active disturbance rejection control has a small overshoot, fast tracking ability, and strong anti-interference ability. The optimized active disturbance rejection control and traditional active disturbance rejection control are applied to the deep-variation motion of autonomous underwater vehicles. Results show that the proposed optimal control strategy is not only simple and feasible but also demonstrates good control performance.


2021 ◽  
Vol 9 (11) ◽  
pp. 1306
Author(s):  
Junhe Wan ◽  
Hailin Liu ◽  
Jian Yuan ◽  
Yue Shen ◽  
Hao Zhang ◽  
...  

An active disturbance rejection control based on fractional calculus is proposed to improve the motion performance and robustness of autonomous underwater vehicle (AUV). The active disturbance rejection control (ADRC) method can estimate and compensate the total disturbance of AUV automatically. The fractional-order PID (proportional integral derivative) has fast dynamic response, which can eliminate the estimation error of extended state observer. The fractional calculus active disturbance rejection strategy combines the advantages of the above two algorithms, and it is designed for AUV heading and pitch subsystems. In addition, the stability of fractional calculus ADRC heading subsystem is proven by Lyapunov stability theorem. The numerical simulations and experimental results document that the superior performance has been achieved. The fractional calculus ADRC strategy has more excellent abilities for disturbance rejection, performs better than ADRC and PID, and has important theoretical and practical value.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aws Abdulsalam Najm ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi ◽  
Ahmad Taher Azar

PurposeThe hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree freedom (DoF) quadrotor system with the existence of exogenous disturbances and system uncertainties.Design/methodology/approachIADRC units are designed for the altitude and attitude systems, while NLPID controllers are designed for the x−y position system on the quadrotor nonlinear model. The proposed controlling scheme is implemented using MATLAB/Simulink environment and is compared with the traditional PID controller and NLPID controller.FindingsDifferent tests have been done, such as step reference tracking, hovering mode, trajectory tracking, exogenous disturbances and system uncertainties. The simulation results showed the demonstrated performance and stability gained by using the proposed scheme as compared with the other two controllers, even when the system was exposed to different disturbances and uncertainties.Originality/valueThe study proposes an NLPID-IADRC scheme to stabilize the motion of the quadrotor system while tracking a specified trajectory in the presence of exogenous disturbances and parameter uncertainties. The proposed multi-objective Output Performance Index (OPI) was used to obtain the optimum integrated time of the absolute error for each subsystem, UAV quadrotor system energy consumption and for minimizing the chattering phenomenon by adding the integrated time absolute of the control signals.


Sign in / Sign up

Export Citation Format

Share Document