On the characterization of pore size distribution of building materials

2017 ◽  
Vol 41 (3) ◽  
pp. 247-263 ◽  
Author(s):  
LF Dutra ◽  
N Mendes ◽  
PC Philippi

Moisture affects significantly the energy performance of air conditioning systems, the durability of materials, and the health of occupants. One way of reducing those effects, without increasing the energy costs, is by means of using porous material ability of absorbing and releasing moisture from/to the adjacent environment, which attenuates the indoor relative humidity variation. This natural ability is intrinsically related to the porous microstructure. Therefore, the characterization of the pore space is an important research theme in the building physics area. This article aims to present a method for obtaining the pore size distribution based on adsorption isotherms and mercury porosimetry data. First, the theoretical formulation based on the Gibbs free energy for a two-phase (liquid–vapor) system, using the De Boer and Zwikker model, is presented, allowing the calculation of the critical adsorbed thickness for pore filling, critical radius, adsorbed moisture content, capillary condensation content, available surface for adsorption, and the distribution of micropores for a wide range of radius. The adsorption isotherm curve is estimated for high relative humidity values through mercury porosimetry, along with the adsorption curve obtained from the experiment. The pore volume distribution calculated by this method can be used to estimate transport coefficients for liquid and vapor phases.

Author(s):  
Jan Fořt ◽  
Magdaléna Doleželová ◽  
Robert Černý

Moisture level significantly affects durability of constructions, their thermal performance and quality of indoor air. Since building envelopes are subjected to a moisture gradient, additional ventilation systems are employed to maintain relative humidity on the desired level. Although modern advanced ventilation systems provide sufficient air exchange rate, their wider application is in conflict with sustainability development principles due to high energy demands. Moreover, according to the European legislation related to the Nearly Zero Energy Buildings (European Directives 2002/91/EC and 2010/31/EU), air tightness of building envelopes in order to provide high thermal resistance leads to large moisture loads in building interiors. Among other factors, a high level of relative humidity has negative effect on the work efficiency and health of building inhabitants. A detailed insight into building materials behavior during cyclic moisture loading was accessed within this study. The moisture buffering values of three interior plasters were investigated in order to describe influence of plasters on moderation of indoor environment. Particular materials were loaded according to the NORDTEST protocol by 8/16 h loading schema at 70/30% RH. Here, the excellent moisture buffer classification was obtained for lightweight perlite plaster (PT) with the highest total open porosity. However, contrary to the higher total open porosity of renovation plaster (PS), the core plaster (CP) achieved higher moisture buffer capacity than PS. This discrepancy refers to the influence of the pore size distribution which is, besides the total open porosity, essential for a detailed characterization of moisture buffering potential of building materials. Based on the results of Mercury intrusion porosimetry, a correlation between pore size distribution and moisture buffer value was revealed.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2247
Author(s):  
Claire Delaroa ◽  
René Fulchiron ◽  
Eric Lintingre ◽  
Zoé Buniazet ◽  
Philippe Cassagnau

The impact of polypropylene and high-density polyethylene backbone binders on the structure of organic matrix, feedstock, and ceramic parts is investigated in terms of morphology in this paper. The miscibility of wax with polyethylene and polypropylene is investigated in the molten state via a rheological study, revealing wax full miscibility with high-density polyethylene and restricted miscibility with polypropylene. Mercury porosimetry measurements realized after wax extraction allow the characterization of wax dispersion in both neat organic blends and zirconia filled feedstocks. Miscibility differences in the molten state highly impact wax dispersion in backbone polymers after cooling: wax is preferentially located in polyethylene phase, while it is easily segregated from polypropylene phase, leading to the creation of large cracks during solvent debinding. The use of a polyethylene/polypropylene ratio higher than 70/30 hinders wax segregation and favors its homogeneous dispersion in organic binder. As zirconia is added to organic blends containing polyethylene, polypropylene, and wax, the pore size distribution created by wax extraction is shifted towards smaller pores. Above zirconia percolation at 40 vol%, the pore size distribution becomes sharp attesting of wax homogeneous dispersion. As the PP content in the organic binder decreases from 100% to 0%, the pore size distribution is reduced of 30%, leading to higher densification ability. In order to ensure a maximal densification of the final ceramic, polyethylene/polypropylene ratios with a minimum content of 70% of high-density polyethylene should be employed.


2019 ◽  
Vol 33 (7) ◽  
pp. 6361-6372 ◽  
Author(s):  
Jinbu Li ◽  
Shuangfang Lu ◽  
Chunqing Jiang ◽  
Min Wang ◽  
Zhuoheng Chen ◽  
...  

2002 ◽  
Vol 74 (11) ◽  
pp. 2470-2477 ◽  
Author(s):  
Felix C. Leinweber ◽  
Dieter Lubda ◽  
Karin Cabrera ◽  
Ulrich Tallarek

Sign in / Sign up

Export Citation Format

Share Document