scholarly journals Contextual support for children’s recall within working memory

2018 ◽  
Vol 72 (6) ◽  
pp. 1364-1378
Author(s):  
Hannah E Roome ◽  
John N Towse ◽  
Maria M Crespo-Llado

Measures of working memory capacity (WMC) are extremely popular, yet we know relatively little about the specific processes that support recall. We focused on children’s and adults’ ability to use contextual support to access working memory representations that might otherwise not be reported. Children ( N = 186, 5-10 years) and adults ( N = 64) completed a listening span task and a delayed recall task with semantic probes or cues. Clear age-related increases in listening span were evident. All age groups benefitted from contextual support to retrieve degraded target memoranda, particularly on listening span tasks when the cues provided semantic support for processing events, in comparison to cues associated specifically with memoranda. Response latencies suggested a developing efficiency in children’s use of contextual support for delayed recall correlated with listening span performance. These probe tasks support accounts of working memory that recognise reconstructive and cued search processes.

2021 ◽  
pp. 1-16
Author(s):  
Qing Yu ◽  
Bradley R. Postle

Abstract Humans can construct rich subjective experience even when no information is available in the external world. Here, we investigated the neural representation of purely internally generated stimulus-like information during visual working memory. Participants performed delayed recall of oriented gratings embedded in noise with varying contrast during fMRI scanning. Their trialwise behavioral responses provided an estimate of their mental representation of the to-be-reported orientation. We used multivariate inverted encoding models to reconstruct the neural representations of orientation in reference to the response. We found that response orientation could be successfully reconstructed from activity in early visual cortex, even on 0% contrast trials when no orientation information was actually presented, suggesting the existence of a purely internally generated neural code in early visual cortex. In addition, cross-generalization and multidimensional scaling analyses demonstrated that information derived from internal sources was represented differently from typical working memory representations, which receive influences from both external and internal sources. Similar results were also observed in intraparietal sulcus, with slightly different cross-generalization patterns. These results suggest a potential mechanism for how externally driven and internally generated information is maintained in working memory.


2009 ◽  
Vol 102 (5) ◽  
pp. 2744-2754 ◽  
Author(s):  
J. Bo ◽  
V. Borza ◽  
R. D. Seidler

Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning.


Interpreting ◽  
2013 ◽  
Vol 15 (2) ◽  
pp. 139-167 ◽  
Author(s):  
Jihong Wang

This study investigated bilingual working memory capacity (WMC) of 31 professional Auslan (Australian Sign Language)/English interpreters: 14 native signers and 17 non-native signers. Participants completed an English listening span task and then an Auslan working memory (WM) span task, each task followed by a brief interview. The native signers were similar to the non-native signers not only in English WMC, but also in Auslan WMC. There was no significant difference between WMC in English and Auslan when native and non-native signers were assessed as a single group. The study also found a moderate to strong, positive correlation between the interpreters’ English WMC and Auslan WMC, suggesting that both WM span tasks tapped into similar cognitive resources. In the interviews, interpreters said that they used multiple strategies to retain the to-be-remembered words/signs. The qualitative data also indicate that WM span tasks like these involve online retention of unrelated words/signs, whereas simultaneous interpreting requires temporary storage of meaningful and coherent concepts.


2015 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anne-Laure Oftinger ◽  
Valerie Camos

<p>Previous research in adults has indicated two maintenance mechanisms of verbal information in working memory, i.e., articulatory rehearsal and attentional refreshing. However, only three studies have examined their joint contribution to children’s verbal working memory. The present study aimed at extending this line of research by investigating the developmental changes occurring from 6 to 9 years old. In two experiments using complex span tasks, children of three different age groups maintained letters or words while performing a concurrent task. The opportunity for attentional refreshing was manipulated by varying the attentional demand of the concurrent task. Moreover, this task was performed either silently by pressing keys or aloud, the latter inducing a concurrent articulation. As expected, recall performance increased strongly with age. More interestingly, concurrent articulation had a detrimental effect on recall even in 6-year-old children. Similarly, introducing a concurrent attention-demanding task impaired recall performance at all ages. Finally, the effect of the availability of rehearsal and of attentional refreshing never interacted at any age. This suggested an independence of the two mechanisms in the maintenance of verbal information in children’s working memory. Implications for the development of rehearsal use and for the role of attention in working memory are discussed.</p>


2009 ◽  
Vol 62 (7) ◽  
pp. 1430-1454 ◽  
Author(s):  
Bradley J. Poole ◽  
Michael J. Kane

Variation in working-memory capacity (WMC) predicts individual differences in only some attention-control capabilities. Whereas higher WMC subjects outperform lower WMC subjects in tasks requiring the restraint of prepotent but inappropriate responses, and the constraint of attentional focus to target stimuli against distractors, they do not differ in prototypical visual-search tasks, even those that yield steep search slopes and engender top-down control. The present three experiments tested whether WMC, as measured by complex memory span tasks, would predict search latencies when the 1–8 target locations to be searched appeared alone, versus appearing among distractor locations to be ignored, with the latter requiring selective attentional focus. Subjects viewed target-location cues and then fixated on those locations over either long (1,500–1,550 ms) or short (300 ms) delays. Higher WMC subjects identified targets faster than did lower WMC subjects only in the presence of distractors and only over long fixation delays. WMC thus appears to affect subjects’ ability to maintain a constrained attentional focus over time.


2012 ◽  
Vol 28 (3) ◽  
pp. 164-171 ◽  
Author(s):  
Thomas S. Redick ◽  
James M. Broadway ◽  
Matt E. Meier ◽  
Princy S. Kuriakose ◽  
Nash Unsworth ◽  
...  

Individual differences in working memory capacity are related to a variety of behaviors both within and outside of the lab. Recently developed automated complex span tasks have contributed to increasing our knowledge concerning working memory capacity by making valid and reliable assessments freely available for use by researchers. Combining the samples from three testing locations yielded data from over 6,000 young adult participants who performed at least one of three such tasks (Operation, Symmetry, and Reading Span). Normative data are presented here for researchers interested in applying cutoffs for their own applications, and information on the validity and reliability of the tasks is also reported. In addition, the data were analyzed as a function of sex and college status. While automated complex span tasks are just one way to measure working memory capacity, the use of a standardized procedure for administration and scoring greatly facilitates comparison across studies.


2009 ◽  
Vol 15 (6) ◽  
pp. 963-972 ◽  
Author(s):  
ALEXANDRA ECONOMOU

AbstractThe aim of this study was to examine discrepancies between immediate/delayed recall and recall/working memory in middle-aged and older persons by age and education. Participants were 322 healthy individuals from the community who were stratified into three age and three education groups. Immediate and delayed recall distributions of WMS-III Logical Memory (LM) scores approximated normal curves, and LM savings scores showed a significant, but small, effect of age. LM (immediate, delayed) and Letter-Number Sequencing (LNS) discrepancies varied as a function of age and education. The difference between LM and LNS was not significant in the younger and less educated participants, but increased with age in the most educated group, and in the oldest group LNS exceeded LM (immediate and delayed). The results indicate deterioration in encoding and retrieval, rather than storage, with age, and show a differential, but small, effect of age and education on the memory measures. Working memory was resistant to age-related decline relative to immediate and delayed recall in the oldest, most educated group. Delayed recall–working memory discrepancy is relatively stable with age and education and may be a useful index of the onset of memory pathology across different ages and levels of education.(JINS, 2009,15, 963–972.)


2012 ◽  
Vol 25 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Mohammad Fakhri ◽  
Hajir Sikaroodi ◽  
Farid Maleki ◽  
Mohammad Ali Oghabian ◽  
Hosein Ghanaati

Purpose:To evaluate patterns of activation, convergence and divergence of three functional magnetic resonance imaging (fMRI) Working Memory (WM) tasks in two different age groups. We want to understand potential impact of task and subjects’ age on WM activations as well as most important areas with regard to WM functions.Materials and methods:Thirty-five healthy volunteers completed visual, verbal, and novel auditory WM tasks. The subjects were selected from age extremes to depict possible impact of normal aging. The General Linear Model was used to report significant activations and the effect of age group. Contrasts revealed differences in activation between tasks, and Combined Task Analysis was performed to determine common regions of activation across tasks.Results:Most of the observed differences between the tasks were seen in areas that were responsible for feature processing. Frontal regions were mainstay activation areas, regardless of the utilized stimulus. We found an age-related reduction in activity of visual (in visually-presented tasks) and auditory (in auditory task) cortices but an age-related increase in prefrontal cortex for all tasks.Conclusion:Regardless of the type of the task stimuli, frontal regions are the most important activation areas in WM processing. These areas are also main targets of age-related changes with regard to activation patterns. Our results also indicate that prefrontal overactivity in working memory might be a compensatory effort to mask age-related decline in sensory processing.


Sign in / Sign up

Export Citation Format

Share Document