Two-level finite difference scheme of improved accuracy order for time-dependent problems of mathematical physics

2010 ◽  
Vol 50 (1) ◽  
pp. 112-123 ◽  
Author(s):  
P. N. Vabishchevich
2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341010 ◽  
Author(s):  
TONGSONG JIANG ◽  
ZHAOLIN JIANG ◽  
JOSEPH KOLIBAL

This paper proposes a new numerical method to solve the 1D time-dependent Schrödinger equations based on the finite difference scheme by means of multiquadrics (MQ) and inverse multiquadrics (IMQ) radial basis functions. The numerical examples are given to confirm the good accuracy of the proposed methods.


2017 ◽  
Vol 36 ◽  
pp. 79-90
Author(s):  
MAK Azad ◽  
LS Andallah

In this paper, numerical technique for solving the one-dimensional (1D) unsteady, incompressible Navier-Stokes equation (NSE) is presented. The governing time dependent non-linear partial equation is reduced to non-linear partial differential equation named as viscous Burgers’ equation by introducing Orlowski and Sobczyk transformation (OST). An explicit exponential finite difference scheme (Expo FDS) has been used for solving reduced 1D NSE. The accuracy of the method has been illustrated by taking two numerical examples. Results are compared with the analytical solutions and those obtained based on the numerical results of reduced 1D NSE as Burgers’ equation. The accuracy and numerical feature of convergence of the Expo FDS is presented by estimating their error norms. Excellent numerical results indicate that the proposed numerical technique is efficient admissible with efficient accuracy for the numerical solutions of the NSE.GANIT J. Bangladesh Math. Soc.Vol. 36 (2016) 79-90


Sign in / Sign up

Export Citation Format

Share Document