scholarly journals cAMP levels regulate macrophage alternative activation marker expression

2020 ◽  
pp. 175342592097508
Author(s):  
Swamy Polumuri ◽  
Darren J Perkins ◽  
Stefanie N Vogel

The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.

2015 ◽  
Vol 88 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Kelly R. Monk ◽  
Jörg Hamann ◽  
Tobias Langenhan ◽  
Saskia Nijmeijer ◽  
Torsten Schöneberg ◽  
...  

2000 ◽  
Vol 113 (13) ◽  
pp. 2463-2470 ◽  
Author(s):  
F. Santini ◽  
R.B. Penn ◽  
A.W. Gagnon ◽  
J.L. Benovic ◽  
J.H. Keen

Non-visual arrestins (arrestin-2 and arrestin-3) play critical roles in the desensitization and internalization of many G protein-coupled receptors. In vitro experiments have shown that both non-visual arrestins bind with high and approximately comparable affinities to activated, phosphorylated forms of receptors. They also exhibit high affinity binding, again of comparable magnitude, to clathrin. Further, agonist-promoted internalization of many receptors has been found to be stimulated by exogenous over-expression of either arrestin2 or arrestin3. The existence of multiple arrestins raises the question whether stimulated receptors are selective for a specific endogenous arrestin under more physiological conditions. Here we address this question in RBL-2H3 cells, a cell line that expresses comparable levels of endogenous arrestin-2 and arrestin-3. When (beta)(2)-adrenergic receptors are stably expressed in these cells the receptors internalize efficiently following agonist stimulation. However, by immunofluorescence microscopy we determine that only arrestin-3, but not arrestin-2, is rapidly recruited to clathrin coated pits upon receptor stimulation. Similarly, in RBL-2H3 cells that stably express physiological levels of m1AChR, the addition of carbachol selectively induces the localization of arrestin-3, but not arrestin-2, to coated pits. Thus, this work demonstrates coupling of G protein-coupled receptors to a specific non-visual arrestin in an in vivo setting.


2015 ◽  
Vol 61 (1) ◽  
pp. 19-29 ◽  
Author(s):  
A.O. Shpakov ◽  
E.A. Shpakova

The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism.


Physiology ◽  
2008 ◽  
Vol 23 (6) ◽  
pp. 313-321 ◽  
Author(s):  
Ying Pei ◽  
Sarah C. Rogan ◽  
Feng Yan ◽  
Bryan L. Roth

Different families of G-protein-coupled receptors (GPCRs) have been engineered to provide exclusive control over the activation of these receptors and thus to understand better the consequences of their signaling in vitro and in vivo. These engineered receptors, named RASSLs (receptors activated solely by synthetic ligands) and DREADDs (designer receptors exclusively activated by designer drugs), are insensitive to their endogenous ligands but can be activated by synthetic drug-like compounds. Currently, the existing RASSLs and DREADDs cover the Gi, Gq, and Gs signaling pathways. These modified GPCRs can be utilized as ideal tools to study GPCR functions selectively in specific cellular populations.


2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Sun ◽  
Hongwei Gao ◽  
Vidya J. Sarma ◽  
Ren-feng Guo ◽  
Peter A. Ward

C5a, one of the most potent inflammatory peptides, induces its inflammatory functions by interacting with C5a receptor (C5aR) that belongs to the rhodopsin family of seven-transmembrane G protein-coupled receptors. C5a/C5aR signaling has been implicated in the pathogenesis of many inflammatory and immunological diseases such as sepsis and acute lung injury. Widespread upregulation of C5aR has been seen at both the protein level and transcriptional level under pathological conditions. Here, we show that C5aR gene expression can be specifically suppressed by siRNA, both in vitro and in vivo. A panel of chemically siRNA oligonucleotides was first synthesized to identify the functional siRNA sequences. The short hairpin RNAs (shRNAs) were also designed, cloned, and tested for the silencing effects in C5aR transfected cells. The effective shRNA expression cassettes were then transferred to an adenovirus DNA vector. ShRNA-expressing adenoviruses were intratracheally administered into mouse lung, and a significant in vivo silencing of C5aR was obtained four days after administration. Thus, C5aR shRNA-expressing adenoviruses appear to be an alternative strategy for the treatment of complement-induced disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oriane Razakarivony ◽  
Adrian Newman-Tancredi ◽  
Luc Zimmer

AbstractThe serotonin 5-HT1A receptor has attracted wide attention as a target for treatment of psychiatric disorders. Although this receptor is important in the pharmacological mechanisms of action of new-generation antipsychotics, its characterization remains incomplete. Studies based on in vitro molecular imaging on brain tissue by autoradiography, and more recently in vivo PET imaging, have not yielded clear results, in particular due to the limitations of current 5-HT1A radiotracers, which lack specificity and/or bind to all 5-HT1A receptors, regardless of their functional status. The new concept of PET neuroimaging of functionally active G-protein-coupled receptors makes it possible to revisit PET brain exploration by enabling new research paradigms. For the 5-HT1A receptor it is now possible to use [18F]-F13640, a 5-HT1A receptor radioligand with high efficacy agonist properties, to specifically visualize and quantify functionally active receptors, and to relate this information to subjects’ pathophysiological or pharmacological state. We therefore propose imaging protocols to follow changes in the pattern of functional 5-HT1A receptors in relation to mood deficits or cognitive processes. This could allow improved discrimination of different schizophrenia phenotypes and greater understanding of the basis of therapeutic responses to antipsychotic drugs. Finally, as well as targeting functionally active receptors to gain insights into the role of 5-HT1A receptors, the concept can also be extended to the study of other receptors involved in the pathophysiology or therapy of psychiatric disorders.


2021 ◽  
Author(s):  
Jie Cui ◽  
Soohyun Park ◽  
Wangsheng Yu ◽  
Kendra Carmon ◽  
Qingyun J. Liu

AbstractLGR4-6 (Leucine-rich repeating containing, G-protein-coupled receptors 4, 5, and 6) are three related receptors with distinct roles in organ development and stem cell survival. All three receptors are upregulated in gastrointestinal cancers to different levels, and LGR5 has been shown to be enriched in cancer stem cells. Antibody-drug conjugates (ADCs) targeting LGR5 showed robust antitumor effect in vivo but could not eradicate tumors due to plasticity of LGR5-positive cancer cells. As LGR5-negative cells often express LGR4 or LGR6 or both, we reasoned that simultaneous targeting of all three LGRs may provide a more effective approach. R-spondins (RSPOs) bind to LGR4-6 with high affinity and potentiate Wnt signaling. We identified an RSPO4 mutant (Q65R) that retains potent LGR binding but no longer potentiates Wnt signaling. The RSPO4 mutant was fused to the N-terminus of human IgG1-Fc to create a peptibody which was then conjugated with cytotoxins monomethyl auristatin or duocarmycin by site-specific conjugation. The resulting peptibody drug conjugates (PDCs) showed potent cytotoxic effects on cancer cell lines expressing any LGR in vitro and suppressed tumor growth in vivo without inducing intestinal enlargement or other adverse effects. These results suggest that RSPO-derived PDCs may provide a novel approach to the treatment of cancers with high LGR expression.


Sign in / Sign up

Export Citation Format

Share Document