Comparative analysis of helmeted impact response of Hybrid III and National Operating Committee on Standards for Athletic Equipment headforms

Author(s):  
Bryan R Cobb ◽  
Abigail M Zadnik ◽  
Steven Rowson
Author(s):  
Ben Stone ◽  
Sean Mitchell ◽  
Yusuke Miyazaki ◽  
Nicholas Peirce ◽  
Andy Harland

Commercially available headforms, such as the Hybrid-III and EN 960 headforms, have been used effectively to investigate the mechanics of head impacts. These headforms may result in accelerations that are unrepresentative of a human head in some impact scenarios. This may be important when considering impacts that produce areas of high pressure, since skull deformation and resonance excitation may influence the dynamic response. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform may produce a more suitable response during these types of impacts due to the more representative skull component. However, permanent deformation may occur in some unprotected impact scenarios, resulting in the entire headform needing to be replaced. This paper outlines the development of a novel, modular and destructible headform (LU headform) that can be used in potentially destructive testing, where individual components can be replaced. The LU headform was modelled after a UK 50th percentile male. The inertial properties of the LU headform were within 6% of those observed in humans. The skull simulant properties were within the range of values reported for human tissue in two build orientations, but lower in one build orientation. The lowest and highest resonance frequencies observed in the headform model were within 5% of those observed in humans. Drop and projectile tests were conducted in line with previous cadaver tests with the observed accelerations within the range reported for post-mortem human subjects. The LU headform offers a practical means of simulating head dynamics during localised unprotected impacts or in protected impacts where local deformation and/or resonance frequency excitation remains possible.


2005 ◽  
Vol 2005.18 (0) ◽  
pp. 231-232
Author(s):  
Kazuya IWATA ◽  
Koji MIZUNO ◽  
Eiichi TANAKA ◽  
Sota YAMAMOTO ◽  
Nobuhiko TANAKA ◽  
...  
Keyword(s):  
Fe Model ◽  

Measurement ◽  
2016 ◽  
Vol 90 ◽  
pp. 309-317 ◽  
Author(s):  
F. Ballo ◽  
M. Gobbi ◽  
G. Mastinu ◽  
G. Previati

2019 ◽  
Vol 184 (Supplement_1) ◽  
pp. 237-244
Author(s):  
Mark Begonia ◽  
Tyler Rooks ◽  
Frank A Pintar ◽  
Narayan Yoganandan

Abstract Blunt impact assessment of the Advanced Combat Helmet (ACH) is currently based on the linear head response. The current study presents a methodology for testing the ACH under complex loading that generates linear and rotational head motion. Experiments were performed on a guided, free-fall drop tower using an instrumented National Operating Committee for Standards on Athletic Equipment (NOCSAE) head attached to a Hybrid III (HIII) or EuroSID-2 (ES-2) dummy neck and carriage. Rear and lateral impacts occurred at 3.0 m/s with peak linear accelerations (PLA) and peak rotational accelerations (PRA) measured at the NOCSAE head center-of-gravity. Experimental data served as inputs for the Simulated Injury Monitor (SIMon) computational model to estimate brain strain. Rear ACH impacts had 22% and 7% higher PLA and PRA when using the HIII neck versus the ES-2 neck. Lateral ACH impacts had 33% and 35% lower PLA and PRA when using HIII neck versus the ES-2 neck. Computational results showed that total estimated brain strain increased by 25% and 76% under rear and lateral ACH impacts when using the ES-2 neck. This methodology was developed to simulate complex ACH impacts involving the rotational head motion associated with diffuse brain injuries, including concussion, in military environments.


1988 ◽  
Author(s):  
Douglas “L” Allsop ◽  
Charles Y. Warner ◽  
Milton G. Wille ◽  
Dennis C. Schneider ◽  
Alan M. Nahum

2006 ◽  
Author(s):  
Waseem Jaradat ◽  
Joseph Hassan ◽  
Guy Nusholtz ◽  
Khalil Taraman ◽  
Sanaa Taraman

The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head impact criterion HIC should be similar. If the THOR dummy is used in the FMVSS 201 free motion headform tests, then when it strikes the interior trim of the vehicle, as prescribed by the FMVSS 201 procedure, the acceleration response should be similar to that of the Hybrid III, as long as only the forehead engages the vehicle interior. To compare and contrast the response of the two dummy heads under FMVSS 201 testing, a design of experiments (DOE), that is a function of seven variables, is utilized to develop a mathematical model of the Head Impact Response. These independent parameters include five trim manufacturing process variables that relate to the interior that the dummy head hits in 201 testing: mold temperature, melt temperature, packing pressure, hold pressure, and injection speed. Two operational variables were also considered: free motion Headform approach angle and the dummy head drop calibration. An incomplete block design approach is utilized in order to significantly reduce the number of experiments. The DOE approach determines the response in the form of the Head Impact Criterion (HIC) with respect to the seven variables at 99% confidence level. The results describe the response data of both dummy heads. The response data of the dummy heads is described. Results indicate that the Hybrid III dummy head and the THOR dummy head have significantly different response characteristics in terms of magnitude of response, variation to different input conditions, repeatability, HIC values, and acceleration time history.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
James R. Funk ◽  
Roberto E. Quesada ◽  
Alexander M. Miles ◽  
Jeff R. Crandall

The inertial properties of a helmet play an important role in both athletic performance and head protection. In this study, we measured the inertial properties of 37 football helmets, a National Operating Committee on Standards for Athletic Equipment (NOCSAE) size 7¼ headform, and a 50th percentile male Hybrid III dummy head. The helmet measurements were taken with the helmets placed on the Hybrid III dummy head. The center of gravity and moment of inertia were measured about six axes (x, y, z, xy, yz, and xz), allowing for a complete description of the inertial properties of the head and helmets. Total helmet mass averaged 1834±231 g, split between the shell (1377±200 g) and the facemask (457±101 g). On average, the football helmets weighed 41±5% as much as the Hybrid III dummy head. The center of gravity of the helmeted head was 1.1±3.0 mm anterior and 10.3±1.9 mm superior to the center of gravity of the bare head. The moment of inertia of the helmeted head was approximately 2.2±0.2 times greater than the bare head about all axes.


Sign in / Sign up

Export Citation Format

Share Document