scholarly journals Braided tape is equivalent to modified Mason-Allen multi-strand #2 suture in subscapularis muscle repair: results of a biomechanical study

2016 ◽  
Vol 9 (2) ◽  
pp. 85-91
Author(s):  
Benjamin Léger-St-Jean ◽  
Jérémie Ménard ◽  
Stéphanie Hinse ◽  
Frédéric Balg ◽  
Dominique M Rouleau

Background To help determine the optimal fixation method for subscapularis tendon repair in arthroplasty, the present study compares single-passage transosseous tape (BT) and modified Mason-Allen #2 suture (MA). Methods Eighteen human cadaveric shoulders were randomized to two repair constructs after arthroplasty preparation. Both techniques included two transosseous passages through the bicipital groove and then through the tendon at the level of the anatomical neck. Construct was tested using a traction machine, measuring cyclic loading and ultimate load to failure. Results The mean age of our specimens was 71 years. No significant difference was observed between the repair techniques in both mean ultimate load and cyclic loading. The mean (SD) ultimate load (UL) for BT was 293 (84) N and 342 (117) N for MA, which was not statistically significant ( p = 0.374). The majority of repairs failed in the tendon. Bone cut-out was observed with the MA but not for the BT repair. No correlation was found between bone density and UL for BT ( r = −0.09) but there was strong correlation for MA ( r = 0.63). Conclusions The MA repair appears to be more dependant on bone mineral density for ultimate load, indicating that braided-tape might be better suited for osteoporotic patients to avoid bone cut-out.

2018 ◽  
Vol 32 (08) ◽  
pp. 825-832 ◽  
Author(s):  
Seth L. Sherman ◽  
Brandee Black ◽  
Matthew A. Mooberry ◽  
Katie L. Freeman ◽  
Trevor R. Gulbrandsen ◽  
...  

AbstractThe objective of this study is to compare the cyclic loading strength and ultimate failure load in suture anchor repair versus transosseous tunnel repair of patellar tendons using a cadaver model. Twelve cadaveric patella specimens were used (six matched pairs). Dual-energy X-ray absorptiometry (DXA) measurements were performed to ensure equal bone quality among groups. All right knees were assigned to the suture anchor repair group (n = 6), whereas all left knees were assigned to the transosseous bone tunnel group (n = 6). Suture type and repair configuration were equivalent. After the respective procedures were performed, each patella was mounted into a gripping jig. Tensile load was applied at a rate of 1 Hz between magnitudes of 50 and 150 N, 50 and 200 N, 50 and 250 N, and tensile load at a rate of 0.1 mm/s until failure. Failure was defined as a sharp deviation in the linear load versus displacement curve, and failure mode was recorded. DXA measurements demonstrated equivalence of bone quality between the two groups (p > 0.05). During cyclic load testing, there was only a statistically significant difference between the groups with regard to cyclic loading at the 50 to 200 N loading cycle (p = 0.010). There was no statistically significant difference between the groups with regard to ultimate load to failure (p = 0.43). Failure mode within the suture anchor cohort occurred through anchor pullout except for one, which failed through the tendon. All specimens within the transosseous cohort failed through the midsubstance of the tendon except for one, which failed through suture breakage. Suture anchor repair demonstrated a similar biomechanical profile regarding cyclic loading and ultimate load to failure when compared with “gold standard” transosseous tunnel patellar tendon repair with a trend toward less gapping in the suture anchor group. Using suture anchors for repair of the patella tendon has similar biomechanical properties to transpatellar tunnels but may provide other clinical advantages.


2021 ◽  
Vol 9 (3) ◽  
pp. 232596712198928
Author(s):  
Heath P. Gould ◽  
Nicholas R. Delaney ◽  
Brent G. Parks ◽  
Roshan T. Melvani ◽  
Richard Y. Hinton

Background: Femoral-sided graft fixation in medial patellofemoral ligament (MPFL) reconstruction is commonly performed using an interference screw (IS). However, the IS method is associated with several clinical disadvantages that may be ameliorated by the use of suture anchors (SAs) for femoral fixation. Purpose: To compare the load to failure and stiffness of SAs versus an IS for the femoral fixation of a semitendinosus autograft in MPFL reconstruction. Study Design: Controlled laboratory study. Methods: Based on a priori power analysis, a total of 6 matched pairs of cadaveric knees were included. Specimens in each pair were randomly assigned to receive either SA or IS fixation. After an appropriate reconstruction procedure, the looped end of the MPFL graft was pulled laterally at a rate of 6 mm/s until construct failure. The best-fit slope of the load-displacement curve was then used to calculate the stiffness (N/mm) in a post hoc fashion. A paired t test was used to compare the mean load to failure and the mean stiffness between groups. Results: No significant difference in load to failure was observed between the IS and the SA fixation groups (294.0 ± 61.1 vs 250.0 ± 55.9; P = .352), although the mean stiffness was significantly higher in IS specimens (34.5 ± 9.6 vs 14.7 ± 1.2; P = .004). All IS reconstructions failed by graft pullout from the femoral tunnel, whereas 5 of the 6 SA reconstructions failed by anchor pullout. Conclusion: In this biomechanical study using a cadaveric model of MPFL reconstruction, SA femoral fixation was not significantly different from IS fixation in terms of load to failure. The mean load-to-failure values for both reconstruction techniques were greater than the literature-reported values for the native MPFL. Clinical Relevance: These results suggest that SAs are a biomechanically viable alternative for femoral-sided graft fixation in MPFL reconstruction.


2018 ◽  
Vol 26 (3) ◽  
pp. 230949901879951 ◽  
Author(s):  
Chih-Kai Hong ◽  
Cheng-Li Lin ◽  
Fa-Chuan Kuan ◽  
Ping-Hui Wang ◽  
Ming-Long Yeh ◽  
...  

Purpose: The purpose of this study was to analyze the effects of different intervals between stitch throws on tendon graft fixation with the Krackow stitch. Methods: Forty-four porcine flexor profundus tendons were randomly divided into four groups of 11 specimens each. The Krackow stitch with various stitch intervals (2.5, 5.0, 7.5, and 10.0 mm) were evaluated, and named the K-2.5, K-5.0, K-7.5, and K-10.0 groups, respectively. A braided nonabsorbable suture was used to complete each suture-tendon construct. All specimens were pretensioned to 100 N for three cycles, cyclically loaded from 50 to 200 N for 200 cycles, and then finally loaded to failure. Elongation after cyclic loading, ultimate load to failure, and the mode of failure were recorded. Results: There were significant differences in elongation after cyclic loading among the K-2.5 (31% ± 5%), K-5.0 (32% ± 4%), K-7.5 (34% ± 5%), and K-10.0 (41% ± 8%) groups ( p = 0.004); the post hoc analysis showed significantly smaller values in the K-2.5 and K-5.0 groups than in the K-10.0 group ( p = 0.002 and 0.003, respectively). The stitch interval was correlated with elongation after cyclic loading ( r = 0.52, p < 0.001). Ultimate loads to failure and cross-sectional area were not significantly different across the four groups. Conclusion: The Krackow stitch with stitch intervals of 2.5 and 5.0 mm had significantly smaller elongation after cyclic loading than with an interval of 10.0 mm in this porcine biomechanical study. The stitch interval was moderately correlated with elongation after cyclic loading.


2019 ◽  
Vol 47 (10) ◽  
pp. 2478-2483 ◽  
Author(s):  
Alexander Otto ◽  
Julian Mehl ◽  
Elifho Obopilwe ◽  
Mark Cote ◽  
Lucca Lacheta ◽  
...  

Background: A rupture of the distal biceps tendon is the most common tendon rupture of the elbow and has received increased attention in the past few years. Newly developed all-suture anchors have the potential to minimize surgical trauma and the risk of adverse events because of the use of flexible drills and smaller drill diameters. Purpose/Hypothesis: The purpose was to biomechanically compare all-suture anchors and titanium suture anchors for distal biceps tendon repair in cadaveric specimens. The hypothesis was that all-suture anchors would show no differences in load to failure or displacement under cyclic loading compared with titanium suture anchors. Study Design: Controlled laboratory study. Methods: Sixteen unpaired, fresh-frozen human cadaveric elbows were randomized to 2 groups, which underwent onlay distal biceps tendon repair with 2 anchors. Bone mineral density at the radial tuberosity was evaluated in each specimen. In the first group, distal biceps tendon repair was performed using all-suture anchors. In the second group, titanium suture anchors were applied. After cyclic loading for 3000 cycles, the repair constructs were loaded to failure. The peak load to failure as well as repair construct stiffness and mode of failure were determined. Results: The mean (±SD) peak load was 293.53 ± 122.15 N for all-suture anchors and 280.02 ± 69.34 N for titanium suture anchors ( P = .834); mean stiffness was 19.78 ± 2.95 N/mm and 19.30 ± 4.98 N/mm, respectively ( P = .834). The mode of failure was anchor pullout for all specimens during load to failure. At the proximal position, all-suture anchors showed a displacement of 1.53 ± 0.80 mm, and titanium suture anchors showed a displacement of 0.81 ± 0.50 mm ( P = .021) under cyclic loading. At the distal position, a displacement of 1.86 ± 1.04 mm for all-suture anchors and 1.53 ± 1.15 mm for titanium suture anchors was measured ( P = .345). A positive correlation between bone mineral density and load to failure was observed ( r = 0.605; P = .013). Conclusion: All-suture anchors were biomechanically equivalent at time zero to titanium suture anchors for onlay distal biceps tendon repair. While the proximally placed all-suture anchors demonstrated greater displacement than titanium suture anchors, the comparable displacement at the distal position as well as the similar load and mechanism of failure make this difference unlikely to be clinically significant. Clinical Relevance: All-suture anchors performed similarly to titanium suture anchors for onlay distal biceps tendon repair at time zero and represent a reasonable alternative.


2016 ◽  
Vol 10 (3) ◽  
pp. 227-231 ◽  
Author(s):  
James M. Cottom ◽  
Joseph S. Baker

Arthrodesis of the first metatarsal cuneiform joint, or Lapidus procedure, is a widely accepted treatment for hallux valgus. Recent studies have focused on comparing various constructs for this procedure both in the laboratory and clinical settings. The current study compared in a cadaveric model the strength of 2 constructs. The first construct utilized a medially applied low-profile locking plate and an interfragmentary screw directed from plantar-distal to dorsal-proximal. The second construct consisted of a plantarly applied plate with a compression screw placed through the plate from plantar-distal to dorsal-proximal. The ultimate load to failure for the 2 groups tested was 255.38 ± 155.38 N and 197.48 ± 108.61 N, respectively (P = .402). There was no significant difference found between the 2 groups with respect to ultimate load to failure, stiffness of the construct, or moment at time of failure. In conclusion, the medially applied plate with plantar interfragmentary screw appears to be stronger than the plantar Lapidus plate tested for first metatarsal cuneiform arthrodesis, though this difference did not reach statistical significance. Levels of Evidence: Level V: Biomechanical Study


2019 ◽  
Vol 33 (03) ◽  
pp. 314-318 ◽  
Author(s):  
Recep Kurnaz ◽  
Murat Aşçı ◽  
Selim Ergün ◽  
Umut Akgün ◽  
Taner Güneş

AbstractOne of the factors affecting the healing of a meniscus repair is the primary stability of the tear. The purpose of this study is to compare single and double vertical loop (SVL vs. DVL) meniscal suture configurations by measuring elongation under cyclic loading and failure properties under ultimate load. We hypothesized that DVL configuration would have superior biomechanical properties than SVL. Twenty-two intact lateral menisci were harvested from patients who required total knee arthroplasty. A 20-mm longitudinal full-thickness cut was made 3 mm from the peripheral rim to simulate a longitudinal tear. Two groups were formed and group randomization was done according to patient age and gender (SVL group: mean age 68.3 years [range, 58–78 years], five males, six females; DVL group: mean age 67.4 years [range, 59–77 years], six males, five females). Cyclic loading was performed between 5 and 30 N at a frequency of 1 Hz for 500 cycles. Then, the meniscus repair construct was loaded until failure. Statistical analysis was performed using the t-test and the Mann–Whitney's U-test. During the early phases of cyclic loading, three specimens from each group failed because of suture pull out and are excluded from the study. At the end of 500 cycles, there was significantly less displacement in the DVL group than the SVL group (6.13 ± 1.04 vs. 9.3 ± 2.59 mm) (p < 0.05). No significant difference was found between groups regarding ultimate load to failure measurements (p > 0.05). All specimens in SVL and five specimens in DVL groups failed in the form of suture pull out from the meniscus tissue. Longitudinal meniscal tears repaired with DVL configuration had less elongation value under cyclic loading compared with SVL configuration. Because of its superior biomechanical properties, it would be more secure to repair large and instable longitudinal meniscal tears by the DVL technique. This is a level II study.


2011 ◽  
Vol 37 (5) ◽  
pp. 396-401 ◽  
Author(s):  
R. Afshar ◽  
T. S. Fong ◽  
M. Hadi Latifi ◽  
S. R. Kanthan ◽  
T. Kamarul

The use of bicortical screws to fix metacarpal fractures has been suggested to provide no added biomechanical advantage over unicortical screw fixation. However, this was only demonstrated in static loading regimes, which may not be representative of biological conditions. The present study was done to determine whether similar outcomes are obtained when cyclic loading is applied. Transverse midshaft osteotomies were created in 20 metacarpals harvested from three cadavers. Fractures were stabilised using 2.0 mm mini fragment plates fixed with either bicortical or unicortical screw fixation. These fixations were tested to failure with a three-point bending cyclic loading protocol using an electromechanical microtester and a 1 kN load cell. The mean load to failure was 370 N (SD 116) for unicortical fixation and 450 N (SD 135) for bicortical fixation. Significant differences between these two constructs were observed. A biomechanical advantage was found when using bicortical screws in metacarpal fracture plating.


Author(s):  
Valentin Rausch ◽  
Birger Jettkant ◽  
Sebastian Lotzien ◽  
Thomas Rosteius ◽  
Eileen Mempel ◽  
...  

Abstract Introduction Among the few techniques described for the treatment of coronoid fractures, osteosynthesis techniques include screw osteosynthesis from anterior to posterior (AP) or from posterior to anterior (PA) and plate osteosynthesis. The aim of this study was to test the biomechanical stability of screw osteosynthesis and plate osteosynthesis using anatomical plates in coronoid process fractures. Materials and methods On a total of 25 biomechanical synthetical ulnae, a coronoid shear fracture including 70% of the coronoid height was simulated. Osteosynthesis was then performed using two 2.7 mm screws from anterior, posterior and with use of three different anatomical plates of the coronoid process. For the biomechanical testing, axial load was applied to the fragment with 1000 cycles from 5 to 250 N, load to failure and load at 100 µm displacement. Displacements were measured using a point-based three-dimensional motion analysis system. Results Osteosynthesis using the PA-screw showed significant more displacement during cyclic loading compared with all other osteosyntheses (0.99 mm), whereas AP-screw showed the smallest displacement (0.10 mm) during cyclic loading. The PA-screw technique showed a significant lower load to failure compared to all other osteosynthesis with the highest load in AP-screw osteosynthesis. The load for 100 µm displacement was the smallest in PA-screw with a significant difference to the AP-screw and one plate osteosynthesis. Conclusion Osteosynthesis of large coronoid shear fractures with two small-fragment screws from anterior allows stable fixation that is not inferior to anterior plate osteosynthesis and might be an alternative in specific fracture types. Posterior screw fixation was found as the weakest fixation method. Level of evidence Basic science study


2020 ◽  
Vol 29 (4) ◽  
pp. 728-735
Author(s):  
Raffy Mirzayan ◽  
Steven M. Andelman ◽  
Paul M. Sethi ◽  
Joshua B. Baldino ◽  
Brendan J. Comer ◽  
...  

2011 ◽  
Vol 37 (4) ◽  
pp. 316-322 ◽  
Author(s):  
T. Moriya ◽  
M. C. Larson ◽  
C. Zhao ◽  
K.-N. An ◽  
P. C. Amadio

The purpose of this study was to describe a modification of the Massachusetts General Hospital (MMGH) tendon repair and to compare it with three other suture techniques. Twenty human flexor digitorum profundus (FDP) tendons were randomly assigned to the modified Pennington (MP) suture and the MMGH suture. These were compared to the modified Kessler (MK) and Massachusetts General Hospital (MGH) sutures, using data from a previous study. All tendons were repaired with a similar epitendinous stitch and core sutures of 4-0 FiberWire. There was no significant difference in the normalized gliding resistance within the two-strand or four-strand core repair groups. The MP suture had significantly higher 2 mm gap force and ultimate load to failure than the MK suture. The MMGH suture had significantly higher 2 mm gap force and maximum failure ultimate load than the MGH suture. All repairs failed by knot unravelling.


Sign in / Sign up

Export Citation Format

Share Document