scholarly journals Abnormalities in the Motor Unit of a Fast-Twitch Lower Limb Skeletal Muscle in Huntington’s Disease

ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141988621 ◽  
Author(s):  
Priscila Aparecida Costa Valadão ◽  
Bárbara Campos de Aragão ◽  
Jéssica Neves Andrade ◽  
Matheus Proença S. Magalhães-Gomes ◽  
Giselle Foureaux ◽  
...  

Huntington’s disease (HD) is a disorder characterized by chronic involuntary movements, dementia, and psychiatric symptoms. It is caused by a mutation in the gene that encodes for huntingtin protein (HTT), leading to the formation of mutant proteins expressed in various tissues. Although brain pathology has become the hallmark for HD, recent studies suggest that damage of peripheral structures also contributes to HD progression. We previously identified severe alterations in the motor units that innervate cervical muscles in 12-month-old BACHD (Bacterial Artificial Chromosome Huntington’s Disease) mice, a well-established mouse model for HD. Here, we studied lumbar motoneurons and their projections onto hind limb fast-twitch skeletal muscles (tibialis anterior), which control balance and gait in HD patients. We found that lumbar motoneurons were altered in the HD mouse model; the number and size of lumbar motoneurons were reduced in BACHD. Structural alterations were also present in the sciatic nerve and neuromuscular junctions. Acetylcholine receptors were organized in several small patches (acetylcholine receptor fragmentation), many of which were partially innervated. In BACHD mice, we observed atrophy of tibialis anterior muscles, decreased expression of glycolytic fast Type IIB fibers, and at the ultrastructural level, alterations of sarcomeres and mitochondria. Corroborating all these findings, BACHD animals performed worse on motor behavior tests. Our results provide additional evidences that nerve–muscle communication is impaired in HD and that motoneurons from distinct spinal cord locations are similarly affected in the disease.

2019 ◽  
Vol 56 (11) ◽  
pp. 7708-7718 ◽  
Author(s):  
Felecia M. Marottoli ◽  
Mercedes Priego ◽  
Eden Flores-Barrera ◽  
Rohan Pisharody ◽  
Steve Zaldua ◽  
...  

Author(s):  
Carol A. Murphy ◽  
Neil E. Paterson ◽  
Angela Chen ◽  
Washington Arias ◽  
Dansha He ◽  
...  

The neurodegenerative disorder Huntington’s disease (HD) is characterized by motor dysfunction, cognitive impairment and psychiatric symptoms. The R6/2 (120 CAG repeats) mouse model of HD recapitulates many of the symptoms of the disease, including marked impairments in cognition and severe motor deficits. As cholinergic function has been reported to be affected in both HD patients and this mouse model, we tested whether treatment with the cholinesterase inhibitor donepezil could improve the R6/2 mice performance in the two-choice swim tank visual discrimination and reversal task. In this test mice are trained to swim towards a light cued platform located on one side of a water-filled tank. Once mice reach an acquisition criterion a reversal ensues. Wild-type and R6/2 mice were dosed with donepezil (0.6 mg/kg/day) or vehicle starting at 8 weeks of age and tested starting at 9 weeks of age. In experiment 1, vehicle-treated R6/2 mice showed a significant deficit during acquisition and reversal as compared to vehicle-treated WT mice. Donepezil improved reversal in the R6/2 group. In experiment 2, we confirmed the beneficial effect of donepezil on reversal in similar conditions. Donepezil had no effect on activity as measured in the open field test or through the latency to reach the platform during the swim test. We suggest that the donepezil-induced improvements in cognitive function observed in the R6/2 transgenic model of HD may reflect amelioration of deficits in cholinergic function that have been reported previously in this model. Further work is required to confirm the findings of these interesting although preliminary studies.


2016 ◽  
Vol 93 ◽  
pp. 64-72 ◽  
Author(s):  
Bárbara Campos de Aragão ◽  
Hermann Alecsandro Rodrigues ◽  
Priscila Aparecida Costa Valadão ◽  
Wallace Camargo ◽  
Lígia Araujo Naves ◽  
...  

2021 ◽  
Author(s):  
Chenjian Li ◽  
Sushuang Zheng ◽  
Sushila A Shenoy ◽  
Wencheng Liu ◽  
Yuanyi Dai ◽  
...  

Here we report the generation and characterization of a novel Huntington's disease (HD) mouse model BAC226Q by using a bacterial artificial chromosome (BAC) system, expressing full length human HTT with ~226 CAG-CAA repeats and containing endogenous human HTT promoter and regulatory elements. BAC226Q recapitulated a full-spectrum of age-dependent and progressive HD-like phenotypes without unwanted and erroneous phenotypes. BAC226Q mice developed normally, and gradually exhibited HD-like mood and cognitive phenotypes at 2 months. From 3-4 months, BAC226Q mice showed robust progressive motor deficits. At 11 months, BAC226Q mice showed significant reduced life span, gradual weight loss and exhibit neuropathology including significant brain atrophy specific to striatum and cortex, striatal neuronal death, widespread huntingtin inclusions and reactive pathology. Therefore, the novel BAC226Q mouse accurately recapitulating robust, age-dependent, progressive HD-like phenotypes will be a valuable tool for studying disease mechanisms, identifying biomarkers and testing gene-targeting therapeutic approaches for HD.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Sushila A Shenoy ◽  
Sushuang Zheng ◽  
Wencheng Liu ◽  
Yuanyi Dai ◽  
Yuanxiu Liu ◽  
...  

Here, we report the generation and characterization of a novel Huntington’s disease (HD) mouse model BAC226Q by using a bacterial artificial chromosome (BAC) system, expressing full-length human HTT with ~226 CAG-CAA repeats and containing endogenous human HTT promoter and regulatory elements. BAC226Q recapitulated a full-spectrum of age-dependent and progressive HD-like phenotypes without unwanted and erroneous phenotypes. BAC226Q mice developed normally, and gradually exhibited HD-like psychiatric and cognitive phenotypes at 2 months. From 3 to 4 months, BAC226Q mice showed robust progressive motor deficits. At 11 months, BAC226Q mice showed significant reduced life span, gradual weight loss and exhibited neuropathology including significant brain atrophy specific to striatum and cortex, striatal neuronal death, widespread huntingtin inclusions, and reactive pathology. Therefore, the novel BAC226Q mouse accurately recapitulating robust, age-dependent, progressive HD-like phenotypes will be a valuable tool for studying disease mechanisms, identifying biomarkers, and testing gene-targeting therapeutic approaches for HD.


Sign in / Sign up

Export Citation Format

Share Document