scholarly journals EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington’s Disease

2019 ◽  
Vol 56 (11) ◽  
pp. 7708-7718 ◽  
Author(s):  
Felecia M. Marottoli ◽  
Mercedes Priego ◽  
Eden Flores-Barrera ◽  
Rohan Pisharody ◽  
Steve Zaldua ◽  
...  
ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141988621 ◽  
Author(s):  
Priscila Aparecida Costa Valadão ◽  
Bárbara Campos de Aragão ◽  
Jéssica Neves Andrade ◽  
Matheus Proença S. Magalhães-Gomes ◽  
Giselle Foureaux ◽  
...  

Huntington’s disease (HD) is a disorder characterized by chronic involuntary movements, dementia, and psychiatric symptoms. It is caused by a mutation in the gene that encodes for huntingtin protein (HTT), leading to the formation of mutant proteins expressed in various tissues. Although brain pathology has become the hallmark for HD, recent studies suggest that damage of peripheral structures also contributes to HD progression. We previously identified severe alterations in the motor units that innervate cervical muscles in 12-month-old BACHD (Bacterial Artificial Chromosome Huntington’s Disease) mice, a well-established mouse model for HD. Here, we studied lumbar motoneurons and their projections onto hind limb fast-twitch skeletal muscles (tibialis anterior), which control balance and gait in HD patients. We found that lumbar motoneurons were altered in the HD mouse model; the number and size of lumbar motoneurons were reduced in BACHD. Structural alterations were also present in the sciatic nerve and neuromuscular junctions. Acetylcholine receptors were organized in several small patches (acetylcholine receptor fragmentation), many of which were partially innervated. In BACHD mice, we observed atrophy of tibialis anterior muscles, decreased expression of glycolytic fast Type IIB fibers, and at the ultrastructural level, alterations of sarcomeres and mitochondria. Corroborating all these findings, BACHD animals performed worse on motor behavior tests. Our results provide additional evidences that nerve–muscle communication is impaired in HD and that motoneurons from distinct spinal cord locations are similarly affected in the disease.


2021 ◽  
Author(s):  
Danielle A. Simmons ◽  
Brian D. Mills ◽  
Robert R. Butler III ◽  
Jason Kuan ◽  
Tyne L. M. McHugh ◽  
...  

AbstractHuntington’s disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


2015 ◽  
Vol 44 ◽  
pp. 121-127 ◽  
Author(s):  
Kuo-Hsuan Chang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Chiung-Mei Chen

Sign in / Sign up

Export Citation Format

Share Document