Archetype-Based Electronic Health Records: A Literature Review and Evaluation of Their Applicability to Health Data Interoperability and Access

2009 ◽  
Vol 38 (2) ◽  
pp. 7-17 ◽  
Author(s):  
Dennis Wollersheim ◽  
Anny Sari ◽  
Wenny Rahayu
2021 ◽  
Author(s):  
Nawar Shara ◽  
Kelley M. Anderson ◽  
Noor Falah ◽  
Maryam F. Ahmad ◽  
Darya Tavazoei ◽  
...  

BACKGROUND Healthcare data are fragmenting as patients seek care from diverse sources. Consequently, patient care is negatively impacted by disparate health records. Machine learning (ML) offers a disruptive force in its ability to inform and improve patient care and outcomes [6]. However, the differences that exist in each individual’s health records, combined with the lack of health-data standards, in addition to systemic issues that render the data unreliable and that fail to create a single view of each patient, create challenges for ML. While these problems exist throughout healthcare, they are especially prevalent within maternal health, and exacerbate the maternal morbidity and mortality (MMM) crisis in the United States. OBJECTIVE Maternal patient records were extracted from the electronic health records (EHRs) of a large tertiary healthcare system and made into patient-specific, complete datasets through a systematic method so that a machine-learning-based (ML-based) risk-assessment algorithm could effectively identify maternal cardiovascular risk prior to evidence of diagnosis or intervention within the patient’s record. METHODS We outline the effort that was required to define the specifications of the computational systems, the dataset, and access to relevant systems, while ensuring data security, privacy laws, and policies were met. Data acquisition included the concatenation, anonymization, and normalization of health data across multiple EHRs in preparation for its use by a proprietary risk-stratification algorithm designed to establish patient-specific baselines to identify and establish cardiovascular risk based on deviations from the patient’s baselines to inform early interventions. RESULTS Patient records can be made actionable for the goal of effectively employing machine learning (ML), specifically to identify cardiovascular risk in pregnant patients. CONCLUSIONS Upon acquiring data, including the concatenation, anonymization, and normalization of said data across multiple EHRs, the use of a machine-learning-based (ML-based) tool can provide early identification of cardiovascular risk in pregnant patients. CLINICALTRIAL N/A


Author(s):  
Sebastian Porsdam Mann ◽  
Julian Savulescu ◽  
Barbara J. Sahakian

Advances in data science allow for sophisticated analysis of increasingly large datasets. In the medical context, large volumes of data collected for healthcare purposes are contained in electronic health records (EHRs). The real-life character and sheer amount of data contained in them make EHRs an attractive resource for public health and biomedical research. However, medical records contain sensitive information that could be misused by third parties. Medical confidentiality and respect for patients' privacy and autonomy protect patient data, barring access to health records unless consent is given by the data subject. This creates a situation in which much of the beneficial records-based research is prevented from being used or is seriously undermined, because the refusal of consent by some patients introduces a systematic deviation, known as selection bias, from a representative sample of the general population, thus distorting research findings. Although research exemptions for the requirement of informed consent exist, they are rarely used in practice due to concerns over liability and a general culture of caution. In this paper, we argue that the problem of research access to sensitive data can be understood as a tension between the medical duties of confidentiality and beneficence. We attempt to show that the requirement of informed consent is not appropriate for all kinds of records-based research by distinguishing studies involving minimal risk from those that feature moderate or greater risks. We argue that the duty of easy rescue—the principle that persons should benefit others when this can be done at no or minimal risk to themselves—grounds the removal of consent requirements for minimally risky records-based research. Drawing on this discussion, we propose a risk-adapted framework for the facilitation of ethical uses of health data for the benefit of society. This article is part of the themed issue ‘The ethical impact of data science’.


2018 ◽  
Vol 13 (sup1) ◽  
pp. 48-60 ◽  
Author(s):  
Mohammad Rasmi ◽  
Malik B. Alazzam ◽  
Mutasem K. Alsmadi ◽  
Ibrahim A. Almarashdeh ◽  
Raed A. Alkhasawneh ◽  
...  

BMJ Open ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. e055528
Author(s):  
Romi Haas ◽  
Ljoudmila Busija ◽  
Alexandra Gorelik ◽  
Denise A O'Connor ◽  
Christopher Pearce ◽  
...  

IntroductionGeneral practice is integral to the Australian healthcare system. Outcome Health’s POpulation Level Analysis and Reporting (POLAR) database uses de-identified electronic health records to analyse general practice data in Australia. Previous studies using routinely collected health data for research have not consistently reported the codes and algorithms used to describe the population, exposures, interventions and outcomes in sufficient detail to allow replication. This paper reports a study protocol investigating patterns of care for people presenting with musculoskeletal conditions to general practice in Victoria, Australia. Its focus is on the systematic approach used to classify and select eligible records from the POLAR database to facilitate replication. This will be useful for other researchers using routinely collected health data for research.Methods and analysisThis is a retrospective cohort study. Patient-related data will be obtained through electronic health records from a subset of general practices across three primary health networks (PHN) in southeastern Victoria. Data for patients with a low back, neck, shoulder and/or knee condition and who received at least one general practitioner (GP) face-to-face consultation between 1 January 2014 and 31 December 2018 will be included. Data quality checks will be conducted to exclude patients with poor data recording and/or non-continuous follow-up. Relational data files with eligible and valid records will be merged to select the study cohort and the GP care received (consultations, imaging requests, prescriptions and referrals) between diagnosis and 31 December 2018. Number and characteristics of patients and GPs, and number, type and timing of imaging requests, prescriptions for pain relief and referrals to other health providers will be investigated.Ethics and disseminationEthics approval was obtained from the Cabrini and Monash University Human Research Ethics Committees (Reference Numbers 02-21-01-19 and 16975, respectively). Study findings will be reported to Outcome Health, participating PHNs, disseminated in academic journals and presented in conferences.


Sign in / Sign up

Export Citation Format

Share Document