Heparin-Binding Epidermal Growth Factor–Like Growth Factor Enhances Aquaporin 3 Expression and Function During Mouse Embryo Implantation

2016 ◽  
Vol 24 (3) ◽  
pp. 463-470 ◽  
Author(s):  
Chuan-Xiang Fang ◽  
Ying-Qi Nong ◽  
Feng-Hua Liu ◽  
Lin Fan ◽  
Ye Chen
1994 ◽  
Vol 269 (31) ◽  
pp. 20060-20066 ◽  
Author(s):  
K. Hashimoto ◽  
S. Higashiyama ◽  
H. Asada ◽  
E. Hashimura ◽  
T. Kobayashi ◽  
...  

Author(s):  
Nuria Hernández ◽  
Marta López-Morató ◽  
Mario J Perianes ◽  
Soledad Sánchez-Mateos ◽  
Vanessa Casas-Rua ◽  
...  

Abstract Embryo implantation in the uterus is a critical step to achieve success following ART. Despite favorable uterine conditions, a great number of good quality embryos fail to implant, often for reasons that are unknown. Hence, improving the implantation potential of embryos is a subject of great interest. 4-Hydroxyestradiol (4-OH-E2), a metabolic product of estradiol produced by endometrial cells, plays a key role in endometrial–embryonic interactions that are necessary for implantation. Nonetheless, the effects of 4-OH-E2 on embryos obtained in vitro have not been yet described. This study was designed to determine whether culture media enriched in 4-OH-E2 could improve the quality and implantation rate of embryos obtained in vitro, using both in vitro and in vivo models. We also analyzed its effects on the epidermal growth factor (EGF)-binding capability of the embryos. Our results showed that the presence of 4-OH-E2 in the culture media of embryos during the morula to blastocyst transition increases embryo quality and attachment to endometrial cells in vitro. 4-OH-E2 can also improve viable pregnancy rates of mouse embryos produced in vitro, reaching success rates that are similar to those from embryos obtained directly from the uterus. 4-OH-E2 improved the embryos’ ability to bind EGF, which could be responsible for the increased embryo implantation potential observed. Therefore, our results strongly suggest that 4-OH-E2 is a strong candidate molecule to supplement human IVF culture media in order to improve embryo implantation. However, further research is required before these findings can be translated with efficacy and safety to fertility clinics.


2004 ◽  
Vol 18 (8) ◽  
pp. 2035-2048 ◽  
Author(s):  
Bukhtiar H. Shah ◽  
Akin Yesilkaya ◽  
J. Alberto Olivares-Reyes ◽  
Hung-Dar Chen ◽  
László Hunyady ◽  
...  

1984 ◽  
Vol 102 (1) ◽  
pp. 57-61 ◽  
Author(s):  
H. Humphries ◽  
S. MacNeil ◽  
D. S. Munro ◽  
S. Tomlinson

ABSTRACT Recent evidence suggests that epidermal growth factor (EGF) may play an important role in the regulation of thyroid growth and function. We have examined the interaction of murine EGF (mEGF) with human and porcine thyroid membranes and compared this with the binding of bovine TSH (bTSH) using 125I-labelled hormones as tracers. The characteristics of the binding of mEGF were found to be similar for human and porcine thyroid membranes. Epidermal growth factor bound with high affinity (affinity constant = 1·4 × 109 l/mol); the density of binding sites was low compared with the TSH receptor. At 37 °C, the binding of 125I-labelled EGF was maximal at 1 h and was saturable in the presence of unlabelled EGF; half-maximal inhibition was at 1 ng EGF/tube (0·5 nmol/l) using 0·5 mg membrane protein/tube. Unlabelled bTSH had no effect on the binding of labelled EGF. Similarly, unlabelled EGF did not affect the binding of labelled TSH; hence it was concluded that mEGF and bTSH bound to independent sites. Epidermal growth factor had no effect on adenylate cyclase activity in membranes prepared from human non-toxic goitre; increasing concentrations of EGF did not affect basal, TSH-stimulated or fluoride-stimulated enzyme activity. J. Endocr. (1984) 102, 57–61


Endocrinology ◽  
1983 ◽  
Vol 112 (5) ◽  
pp. 1680-1686 ◽  
Author(s):  
K. WESTERMARK ◽  
F. A. KARLSSON ◽  
B. WESTERMARK

Sign in / Sign up

Export Citation Format

Share Document