Epidermal Growth Factor Modulates Thyroid Growth and Function in Culture*

Endocrinology ◽  
1983 ◽  
Vol 112 (5) ◽  
pp. 1680-1686 ◽  
Author(s):  
K. WESTERMARK ◽  
F. A. KARLSSON ◽  
B. WESTERMARK
1984 ◽  
Vol 102 (1) ◽  
pp. 57-61 ◽  
Author(s):  
H. Humphries ◽  
S. MacNeil ◽  
D. S. Munro ◽  
S. Tomlinson

ABSTRACT Recent evidence suggests that epidermal growth factor (EGF) may play an important role in the regulation of thyroid growth and function. We have examined the interaction of murine EGF (mEGF) with human and porcine thyroid membranes and compared this with the binding of bovine TSH (bTSH) using 125I-labelled hormones as tracers. The characteristics of the binding of mEGF were found to be similar for human and porcine thyroid membranes. Epidermal growth factor bound with high affinity (affinity constant = 1·4 × 109 l/mol); the density of binding sites was low compared with the TSH receptor. At 37 °C, the binding of 125I-labelled EGF was maximal at 1 h and was saturable in the presence of unlabelled EGF; half-maximal inhibition was at 1 ng EGF/tube (0·5 nmol/l) using 0·5 mg membrane protein/tube. Unlabelled bTSH had no effect on the binding of labelled EGF. Similarly, unlabelled EGF did not affect the binding of labelled TSH; hence it was concluded that mEGF and bTSH bound to independent sites. Epidermal growth factor had no effect on adenylate cyclase activity in membranes prepared from human non-toxic goitre; increasing concentrations of EGF did not affect basal, TSH-stimulated or fluoride-stimulated enzyme activity. J. Endocr. (1984) 102, 57–61


1991 ◽  
Vol 58 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Christine B. Gow ◽  
Debbi J. Singleton ◽  
Mervyn J. Silvapulle ◽  
G. Philip M. Moore

SummaryTwin-bearing ewes were treated with epidermal growth factor (EGF) to determine its effect on mammogenesis and resultant milk production and composition. The EGF was infused intravenously at a dose rate of O5 mg/d in 300 ml saline between days 117 and 139 of gestation; control animals received placebo infusions of saline. All animals then received continuous infusions of 300 ml/d saline on days 139–144. Following parturition 1–5 d later, ewes were milked by hand for 10 d and thereafter were machine-milked until day 16 of lactation. At this level of treatment, EGF was not detected in the circulation during infusion and feed intake was not affected. All ewes gave birth to healthy twin lambs. There were no effects of EGF on birth weights of lambs, live weights of ewes or lengths of gestation. An EGF immunoreactive material was detected in the mammary secretions of control ewes at a mean concentration of 2 μg/l on day 1 of lactation. Two ewes had detectable levels on day 2, but none was found in the milk thereafter. In the EGF-infused group, concentrations of EGF in colostrum were ñ 10 times higher than in the control ewes on day 1 of lactation and EGF was detected in mammary secretions on day 2 but not in subsequent milk samples. A range of 0·3–0·5% of the EGF infused appeared in mammary secretions over the first 2 d of lactation. No other differences were observed for colostrum composition, subsequent milk yield or composition between the two groups of ewes indicating that mammary gland development and function were unaffected. The levels of EGF observed in the mammary secretions of treated and control ewes indicate that the mammary glands accumulate and store EGF in the pre partum period.


1989 ◽  
Vol 259 (2) ◽  
pp. 577-583 ◽  
Author(s):  
J Blay ◽  
K A Valentine-Braun ◽  
J K Northup ◽  
M D Hollenberg

Membrane vesicles shed from intact A-431 epidermoid carcinoma cells and harvested in the presence of Ca2+ contained epidermal-growth-factor (EGF) receptor/kinase substrates of apparent molecular masses 185, 85, 70, 55, 38 and 27 kDa. The 38 kDa substrate (p38) was recognized by an antibody that had been raised against the human placental EGF receptor/kinase substrate calpactin II (lipocortin I). The A-431 and placental substrates, isolated by immunoprecipitation after phosphorylation in situ, yielded identical phosphopeptide maps upon limited proteolytic digestion with each of five different enzymes. The A-431-cell vesicular p38 is therefore calpactin II. EGF treatment of the intact A-431 cells before inducing vesiculation was not necessary for the substrate to be present within the vesicles. Our data thus indicate that receptor internalization is not a prerequisite for receptor-mediated phosphorylation of calpactin II. The ability of the protein to function as a substrate for the receptor/kinase depended upon the continued presence of Ca2+ during the vesicle-isolation procedure. EGF-stimulated phosphorylation of calpactin II was much less pronounced in vesicles prepared from A-431 cells in the absence of Ca2+, although comparable amounts of the protein were detectable by immunoblotting. Calpactin II therefore appears to be sequestered in a Ca2+-modulated manner within shed vesicles, along with at least four other major targets for the EGF receptor/kinase. The vesicle preparation may be a useful model system in which to study the phosphorylation and function of potentially important membrane-associated substrates for the receptor.


2006 ◽  
Vol 34 (4) ◽  
pp. 524-533 ◽  
Author(s):  
Henriette E. Meyer zu Schwabedissen ◽  
Markus Grube ◽  
Annette Dreisbach ◽  
Gabriele Jedlitschky ◽  
Konrad Meissner ◽  
...  

2008 ◽  
Vol 19 (12) ◽  
pp. 5267-5278 ◽  
Author(s):  
Verena Goebeler ◽  
Michaela Poeter ◽  
Dagmar Zeuschner ◽  
Volker Gerke ◽  
Ursula Rescher

Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. Late endosomes, organelles of the degradative lysosomal route, seem to require associated actin filaments for proper localization and function. We show here that the F-actin and phospholipid binding protein annexin A8 is associated specifically with late endosomes. Altering intracellular annexin A8 levels drastically affected the morphology and intracellular distribution of late endosomes. Trafficking through the degradative pathway was delayed in the absence of annexin A8, resulting in attenuated ligand-induced degradation of the epidermal growth factor receptor and prolonged epidermal growth factor-induced activation of mitogen-activated protein kinase. Depletion of annexin A8 reduced the association of late endosomal membranes with actin filaments. These results indicate that the defective cargo transport through the late endocytic pathway and the imbalanced signaling of activated receptors observed in the absence of annexin A8 results from the disturbed association of late endosomal membranes with the actin network, resulting in impaired actin-based late endosome motility.


Sign in / Sign up

Export Citation Format

Share Document