scholarly journals Chemical Composition of the Essential Oils from the Flower, Leaf and Stem of Lonicera japonica

2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700
Author(s):  
Nenad Vukovic ◽  
Miroslava Kacaniova ◽  
Lukas Hleba ◽  
Slobodan Sukdolak

The essential oils from different aerial parts of Lonicera japonica have been extracted by hydro-distillation and analyzed by gas chromatography and gas chromatography coupled with mass spectrometry. Quantitative and qualitative differences were found between the analyzed plant parts. A total of eighty-nine compounds were identified. The main constituents were ( Z, Z)-farnesole (16.2%) and linalool (11.0%) for the flowers fraction, hexadecanoic acid (16.0%) and linalool (8.7%) for the leaves fraction, and hexadecanoic acid (31.4%) for the stems. Monoterpene hydrocarbons were absent from all the oils, and oxygenated sesquiterpenes were not identified in the essential oil of the stem.

2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092048 ◽  
Author(s):  
Daniela Rigano ◽  
Carmen Formisano ◽  
Sergio Rosselli ◽  
Natale Badalamenti ◽  
Maurizio Bruno

In the present study, the chemical composition of the essential oils from aerial parts of Ballota nigra subsp. uncinata (Bég.) Patzak collected in Sicily was evaluated by gas chromatography (GC) and GC-mass spectrometry. The main components of the oil were ( E)-phytol (20.0%), α-pinene (9.0%), hexahydrofarnesyl acetone (5.7%), and α-selinene (5.1%). Cluster analysis of the essential oil compositions of all the taxa belonging to B. nigra s.l. group was performed.


2008 ◽  
Vol 3 (10) ◽  
pp. 1934578X0800301
Author(s):  
Adebayo A. Gbolade ◽  
Daniela M. Biondi ◽  
Giuseppe Ruberto

The essential oils from two members of the Asteraceae ( Acanthospermum hispidum DC. aerial parts, and leaves of Tithonia diversifolia (Hemsley) A. Gray), growing wild in Osun State, Nigeria, have been characterised by combined gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. Twenty-nine components have been fully identified and grouped into monoterpene hydrocarbons (22.2%), oxygenated monoterpenes (4.6%), sesquiterpenes hydrocarbons (58.2%) and oxygenated sesquiterpenes (10.8%) in A. hispidum. The main constituents of the oil were β-caryophyllene (28.0%), α-pinene (15.9%) and bicyclogermacrene (11.0%) among the hydrocarbon compounds, and bisabolol (8.9%) and carvacrol methyl ether (4.1%) among the oxygenated components. Tithonia diversifolia essential oil comprised seventeen components and was characterised by a predominant content of monoterpene hydrocarbons (87.9%), cis-β-ocimene (43.7%), α-pinene (28.6%) and limonene (12.0%) being the main compounds. Sesquiterpenes represented ca. 10% oil, as sum of hydrocarbons and oxygenated components. A new chemotype is established for T. diversifolia, while the Nigerian A. hispidum is being reported for the first time as a new source of essential oil with some distinction in composition from those of other sources.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The chemical composition of the hydro-distilled essential oil obtained from the flowering aerial parts of Vernonia albicans DC. (Asteraceae) was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with a mass spectrometry (GC/MS). Thirty-nine compounds have been identified, representing 97.5% of the total oil. The major constituents were β-caryophyllene (34.3%), γ-amorphene (19.5%), 9-epi-β-caryophyllene (6.9%), and α-pinene (6.9%). The oil was found to be rich in sesquiterpene hydrocarbons (73.9%).


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The essential oil obtained from the aerial parts of Croton bonplandianus Baill. was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 37 compounds have been identified, representing 96.2% of the total oil. The main constituents were identified as β-caryophyllene (16.7%), germacrene D (14.7%), borneol (8.3%), Z-β-damascenone (6.(%), isobornyl acetate (6.2%), α-humulene (6.1%), germacrene A (5.2%) and caryophyllene oxide (4.5%). The oil was rich in sesquiterpene hydrocarbons (60.1%).


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The hydro-distilled essential oil obtained from the flowering aerial parts of Lepidagathis fasciculata Nees was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). A total of 38 compounds have been identified, representing 91.2% of the total oil. The major constituents were δ-cadinene (14.4 %), γ-curcumene (9.8%), sandaracopimarinal (6.6%), germacrene D-4-ol (6.1%), cembrene (5.0%), β-calacorene (3.6%), ar-curcumene (3.3%), trans–4,10-epoxy-amorphane (3.2%), abietatriene (2.9%), and α-cubebene (2.8%). The oil was rich in sesquiterpene hydrocarbons (43.8%).


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1985749
Author(s):  
Jorge A. Pino ◽  
María Milagros Dueñas-Mendoza ◽  
Leoncio Solís-Quispe

The chemical composition of the essential oil from aerial parts of Minthostachys acris Schmidt-Leb. grown in Cuzco was studied. A total of 59 volatile compounds were identified by gas-chromatography-flame ionization detector and gas chromatography-mass spectrometry in the essential oil obtained by steam distillation, of which the most prominent were pulegone (54.4%), cis-menthone (11.0%), and thymol (6.3%).


2020 ◽  
Vol 9 (10) ◽  
pp. e9599109270
Author(s):  
Gledson Ferreira Macedo ◽  
José Weverton Almeida-Bezerra ◽  
Viviane Bezerra da Silva ◽  
Elvis Estilak Lima ◽  
Saulo Almeida de Menezes ◽  
...  

There is a growing search in the chemical composition of essential oils, as they have biological and pharmacological activities. Among the plants with homogeneous composition in essential oils stands out the species Eremanthus arboreus (Gardner) MacLeish, (Asteraceae) popularly known as the “candeeiro”. This plant species is native to Chapada of Araripe - Ceará, Brazil. The objective was to characterize chemically the constituents of the essential oil (OE) of E. arboreus by means of Gas Chromatography and perform a review of its biological and pharmacological activities. The botanical material was collected in Chapada of Araripe, Barbalha - CE, Brazil, in April 2014, the extraction and collection of OE was done in Clevenger apparatus. The chemical composition of the OE was performed by Gas Chromatography coupled to Mass Spectrometry (CG/MS). As for the review, specialized scientific bases (Scopus, Scielo and Web of Science) were consulted. According to the results, 8 constituents were identified, where α-Bisabolol is mentioned as being the main component of the essential oil of this species. As for the biological and pharmacological activities of the OE, it was demonstrated that the species has the following activities: antimicrobial, larvicide, anti-inflammatory and antinociceptive. Eremanthus arboreus is a species with great pharmaceutical potential and also an alternative for industries that target products based on the constituent α-Bisabolol.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Rajesh K. Joshi

The aim of the present study was to investigate and identify the essential oil constituents of Leucas indica (L.) R.Br. (Lamiaceae). The chemical composition of the hydro-distilled essential oil was obtained from the flowering aerial parts of L. indica for the first time. The oil was analyzed by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Fifty-six compounds were identified, representing 99.1% of the total oil. The main constituents were β-caryophyllene (51.1%) and α-caryophyllene (10.2%). The oil was found to be rich in sesquiterpene hydrocarbons (71.8%).


2019 ◽  
Vol 41 ◽  
pp. e46822
Author(s):  
Beatriz Eugenia Jaramillo-Colorado ◽  
Samyr Suarez-López ◽  
Vanessa Marrugo-Santander

The objectives of this work were the study of the volatile chemical composition of essential oils (EO’s) from Bursera graveolens obtained in the locality of Malagana, municipality of Mahates, Bolívar, Colombia, as well as to evaluate their repellent and fumigant properties. EO’s were extracted by hydro-distillation and characterized by gas chromatography-mass spectrometry (GC-MS). The major compounds found in B. graveolens were limonene (42.2%), pulegone (20.9%), carvone (7.5%), caryophyllene (4.1%), and trans-carveol (3.8%). The repellent activity of EO’s was determined by the area preference method, where the EO of B. graveolens presented repellent activity against the Tribolium castaneum weevil at a concentration of 1 at 2% and 4 hours of exposure (88.1 and 88.6% respectively). B. graveolens essential oil was more effective in its fumigant activity with LC50 of 108.2 μg oil mL-1. Also, the fumigant and repellent activities of two individual compounds present in the oil were evaluated, that is, limonene (majority) and caryophyllene. The results indicated that B. graveolens essential oil could be a promising alternative to new natural repellents and biocides.


2014 ◽  
Vol 36 (spe1) ◽  
pp. 202-208 ◽  
Author(s):  
Felipe Girotto Campos ◽  
Daniel Baron ◽  
Marcia Ortiz Mayo Marques ◽  
Gisela Ferreira ◽  
Carmen Silvia Fernandes Boaro

The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl.) H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E)-caryophyllene (29.29%), (Z)-caryophyllene (16.86%), γ-muurolene (7.54%), α-pinene (13.86%), and tricyclene (10.04%). Ten substances were detected in the oil from A. squamosa, primarily (E)-caryophyllene (28.71%), (Z)-caryophyllene (14.46%), α-humulene (4.41%), camphene (18.10%), α-pinene (7.37%), β-pinene (8.71%), and longifolene (5.64%). Six substances were common to both species: (E)-caryophyllene, (Z)-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.


Sign in / Sign up

Export Citation Format

Share Document