scholarly journals Leaf Functional Traits Are Related to Tree Size and Location in Cotton Trees Bombax malabaricum

2020 ◽  
Vol 13 ◽  
pp. 194008292091686
Author(s):  
Lingcong Liao ◽  
Huan Jiang ◽  
Wenxing Long ◽  
Hui Zhang ◽  
Yikang Cheng ◽  
...  

Exploring intraspecific variation of functional traits of different sizes and ecogeographical regions is important to understand the adaptation strategies of tree populations to their environments. In this study, we explored the variation and bivariate relationships of 16 functional traits of 30 trees of Bombax malabaricum across 5 geographical regions in Hainan Island and between large- and small-sized tree populations. Principal component analysis showed that leaf thickness (LTh), guard cell length, and lower epidermis (LE) thickness were the key functional traits implicated in varying ecological strategies of B. malabaricum. A significant variation was found in the key functional traits including LE thickness, LTh, and guard cell (GCL) in populations across different ecogeographical regions. However, the LE and LTh vary significantly between the large- and small-sized trees. The LTh and LE thickness also showed an allometric relationship across different geographical regions and tree sizes. Hence, it was concluded that trees vary their ecological strategy according to their ontological developments across environments. Moreover, adaptation strategies of large-sized trees differing from small-sized ones highlight the fact that priority should be taken to conserve the trees with high age.

2020 ◽  
Author(s):  
Fang-Qing Chen ◽  
Shoupeng Guan ◽  
Mengya Geng ◽  
Kun Lv ◽  
Yongwen Huang

Abstract Background: Disanthus cercidifolius var. longipes H. T. Chang is a rare and endangered plant distributed only in the high mountains of southeastern China. In order to reveal the variation in leaf functional traits and plant investment strategies with the change of growth and developmental stages of this species, the leaf functional traits and the trait syndrome including leaf thickness (LT), leaf area (LA), leaf water content (LWC), specific leaf area (SLA), leaf total nitrogen content (LNC), and leaf total phosphorus content (LPC) of plants at different growth and developmental stages were investigated. Results:The leaf functional traits of the plants significantly differed at different developmental stages. LT and LA of the plants increased during growth and development. LT and LA of the adult plants were 36.65% and 84.23% higher than those of the seedlings, respectively. In contrast, SLA, LWC, LNC, and LPC decreased, and in adult plants they were 48.91%, 6.63%, 8.49%, and 34.66% lower, respectively, than in seedlings. Principal component analysis showed that as the plants developed, the trait syndrome changed toward increasing LT and LA and decreasing LWC, SLA, LNC, and LPC.Conclusions:The characteristics of leaf functional traits and trait syndromes changed across different stages of growth and development. The investment strategy changed from fast return to slow return as the plant grew and developed.


Oecologia ◽  
2021 ◽  
Vol 195 (3) ◽  
pp. 759-771
Author(s):  
Jeannine H. Richards ◽  
Jonathan J. Henn ◽  
Quinn M. Sorenson ◽  
Mark A. Adams ◽  
Duncan D. Smith ◽  
...  

2017 ◽  
Vol 55 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Marney E. Isaac ◽  
Rolando Cerda ◽  
Bruno Rapidel ◽  
Adam R. Martin ◽  
Adam K. Dickinson ◽  
...  

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


Sign in / Sign up

Export Citation Format

Share Document