scholarly journals Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction

2020 ◽  
Vol 33 (4) ◽  
pp. 273-285
Author(s):  
Ryan A Rava ◽  
Kenneth V Snyder ◽  
Maxim Mokin ◽  
Muhammad Waqas ◽  
Ariana B Allman ◽  
...  

In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.

2018 ◽  
Vol 7 (6) ◽  
pp. 513-521 ◽  
Author(s):  
Nuno Martins ◽  
Ana Aires ◽  
Beatriz Mendez ◽  
Sandra Boned ◽  
Marta Rubiera ◽  
...  

Background: Determining the size of infarct extent is crucial to elect patients for reperfusion therapies. Computed tomography perfusion (CTP) based on cerebral blood volume may overestimate infarct core on admission and consequently include ghost infarct core (GIC) in a definitive lesional area. Purpose: Our goal was to confirm and better characterize the GIC phenomenon using CTP cerebral blood flow (CBF) as the reference parameter to determine infarct core. Methods: We performed a retrospective, single-center analysis of consecutive thrombectomies of middle cerebral or intracranial internal carotid artery occlusions considering noncontrast CT Alberta Stroke Program Early CT Score ≥6 in patients with pretreatment CTP. We used the RAPID® software to measure admission infarct core based on initial CBF. The final infarct was extracted from follow-up CT. GIC was defined as initial core minus final infarct > 10 mL. Results: A total of 123 patients were included. The median National Institutes of Health Stroke Scale score was 18 (13–20), the median time from symptoms to CTP was 188 (67–288) min, and the recanalization rate (Thrombolysis in Cerebral Infarction score 2b, 2c, or 3) was 83%. Twenty patients (16%) presented with GIC. GIC was associated with shorter time to recanalization (150 [105–291] vs. 255 [163–367] min, p = 0.05) and larger initial CBF core volume (38 [26–59] vs. 6 [0–27] mL, p < 0.001). An adjusted logistic regression model identified time to recanalization < 302 min (OR 4.598, 95% CI 1.143–18.495, p = 0.032) and initial infarct volume (OR 1.01, 95% CI 1.001–1.019, p = 0.032) as independent predictors of GIC. At 24 h, clinical improvement was more frequent in patients with GIC (80 vs. 49%, p = 0.01). Conclusions: CTP CBF < 30% may overestimate infarct core volume, especially in patients imaged in the very early time window and with fast complete reperfusion. Therefore, the CTP CBF technique may exclude patients who would benefit from endovascular treatment.


Stroke ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 223-231
Author(s):  
Hulin Kuang ◽  
Wu Qiu ◽  
Anna M. Boers ◽  
Scott Brown ◽  
Keith Muir ◽  
...  

Background and Purpose: Prediction of infarct extent among patients with acute ischemic stroke using computed tomography perfusion is defined by predefined discrete computed tomography perfusion thresholds. Our objective is to develop a threshold-free computed tomography perfusion–based machine learning (ML) model to predict follow-up infarct in patients with acute ischemic stroke. Methods: Sixty-eight patients from the PRoveIT study (Measuring Collaterals With Multi-Phase CT Angiography in Patients With Ischemic Stroke) were used to derive a ML model using random forest to predict follow-up infarction voxel by voxel, and 137 patients from the HERMES study (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) were used to test the derived ML model. Average map, T max , cerebral blood flow, cerebral blood volume, and time variables including stroke onset-to-imaging and imaging-to-reperfusion time, were used as features to train the ML model. Spatial and volumetric agreement between the ML model predicted follow-up infarct and actual follow-up infarct were assessed. Relative cerebral blood flow <0.3 threshold using RAPID software and time-dependent T max thresholds were compared with the ML model. Results: In the test cohort (137 patients), median follow-up infarct volume predicted by the ML model was 30.9 mL (interquartile range, 16.4–54.3 mL), compared with a median 29.6 mL (interquartile range, 11.1–70.9 mL) of actual follow-up infarct volume. The Pearson correlation coefficient between 2 measurements was 0.80 (95% CI, 0.74–0.86, P <0.001) while the volumetric difference was −3.2 mL (interquartile range, −16.7 to 6.1 mL). Volumetric difference with the ML model was smaller versus the relative cerebral blood flow <0.3 threshold and the time-dependent T max threshold ( P <0.001). Conclusions: A ML using computed tomography perfusion data and time estimates follow-up infarction in patients with acute ischemic stroke better than current methods.


2019 ◽  
Vol 32 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Daniel Weiss ◽  
Bastian Kraus ◽  
Christian Rubbert ◽  
Marius Kaschner ◽  
Sebastian Jander ◽  
...  

Purpose This study compares computed tomography angiography-based collateral scoring systems in regard to their inter-rater reliability and potential to predict functional outcome after endovascular thrombectomy, and relates them to parenchymal perfusion as measured by computed tomography perfusion. Methods Eighty-four patients undergoing endovascular thrombectomy in anterior circulation ischaemic stroke were enrolled. Modified Tan Score, Miteff Score, Maas Score and Opercular Index Score ratio were assessed in pre-interventional computed tomography angiographies independently by two readers. Collateral scores were tested for inter-rater reliability by weighted-kappa, for correlations with three-months modified Rankin Scale, and their potential to differentiate between patients with favourable (modified Rankin Scale ≤2) and poor outcome (modified Rankin Scale ≥3). Correlations with relative cerebral blood volume and relative cerebral blood flow were tested in patients with available computed tomography perfusion. Results Very good inter-rater reliability was found for Modified Tan, Miteff and Opercular Index Score ratio, and substantial reliability for Maas. There were no significant correlations between collateral scores and three-months modified Rankin Scale, but significant group differences between patients with favourable and poor outcome for Maas, Miteff and Opercular Index Score ratio. Miteff and Maas were significant predictors of favourable outcome in binary logistic regression analysis. Miteff best differentiated between both outcome groups in receiver-operating characteristics, and Maas reached highest sensitivity for favourable outcome prediction of 96%. All collateral scores significantly correlated with mean relative cerebral blood volume and relative cerebral blood flow. Conclusions Computed tomography angiography scores are valuable in estimating functional outcome after mechanical thrombectomy and reliable across readers. The more complex scores, Maas and Miteff, show the best performances in predicting favourable outcome.


Stroke ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 634-641 ◽  
Author(s):  
Mehdi Bouslama ◽  
Krishnan Ravindran ◽  
George Harston ◽  
Gabriel M. Rodrigues ◽  
Leonardo Pisani ◽  
...  

Background and Purpose: The e-Stroke Suite software (Brainomix, Oxford, United Kingdom) is a tool designed for the automated quantification of The Alberta Stroke Program Early CT Score and ischemic core volumes on noncontrast computed tomography (NCCT). We sought to compare the prediction of postreperfusion infarct volumes and the clinical outcomes across NCCT e-Stroke software versus RAPID (IschemaView, Menlo Park, CA) computed tomography perfusion measurements. Methods: All consecutive patients with anterior circulation large vessel occlusion stroke presenting at a tertiary care center between September 2010 and November 2018 who had available baseline infarct volumes on both NCCT e-Stroke Suite software and RAPID CTP as well as final infarct volume (FIV) measurements and achieved complete reperfusion (modified Thrombolysis in Cerebral Infarction scale 2c-3) post-thrombectomy were included. The associations between estimated baseline ischemic core volumes and FIV as well as 90-day functional outcomes were assessed. Results: Four hundred seventy-nine patients met inclusion criteria. Median age was 64 years (55–75), median e-Stroke and computed tomography perfusion ischemic core volumes were 38.4 (21.8–58) and 5 (0–17.7) mL, respectively, whereas median FIV was 22.2 (9.1–56.2) mL. The correlation between e-Stroke and CTP ischemic core volumes was moderate (R=0.44; P <0.001). Similarly, moderate correlations were observed between e-Stroke software ischemic core and FIV (R=0.52; P <0.001) and CTP core and FIV (R=0.43; P <0.001). Subgroup analysis showed that e-Stroke software and CTP performance was similar in the early and late (>6 hours) treatment windows. Multivariate analysis showed that both e-Stroke software NCCT baseline ischemic core volume (adjusted odds ratio, 0.98 [95% CI, 0.97–0.99]) and RAPID CTP ischemic core volume (adjusted odds ratio, 0.98 [95% CI, 0.97–0.99]) were independently and comparably associated with good outcome (modified Rankin Scale score of 0–2) at 90 days. Conclusions: NCCT e-Stroke Suite software performed similarly to RAPID CTP in assessing postreperfusion FIV and functional outcomes for both early- and late-presenting patients. NCCT e-Stroke volumes seems to represent a viable alternative in centers where access to advanced imaging is limited. Moreover, the future development of fusion maps of NCCT and CTP ischemic core estimates may improve upon the current performance of these tools as applied in isolation.


2017 ◽  
Vol 30 (2) ◽  
pp. 138-143 ◽  
Author(s):  
Marios-Nikos Psychogios ◽  
Michael Knauth ◽  
Raya Bshara ◽  
Katharina Schregel ◽  
Ioannis Tsogkas ◽  
...  

Introduction Some of the latest groundbreaking trials suggest that noncontrast cranial computed tomography and computed tomography-angiography are sufficient tools for patient selection within six hours of symptom onset. Before endovascular stroke therapy became the standard of care, patient selection was one of the most useful tools to avoid futile reperfusions. We report the outcomes of endovascularly treated stroke patients selected with a perfusion-based paradigm and discuss the implications in the current era of endovascular treatment. Material and methods After an interdisciplinary meeting in September 2012 we agreed to select thrombectomy candidates primarily based on computed tomography perfusion with a cerebral blood volume Alberta Stroke Program Early Computed Tomography Scale (CBV-ASPECTS) of <7 being a strong indicator of futile reperfusion. In this study, we retrospectively screened all patients with an M1 thrombosis in our neurointerventional database between September 2012 and December 2014. Results In 39 patients with a mean age of 69 years and a median admission National Institute of Health Stroke Scale of 17 the successful reperfusion rate was 74% and the favourable outcome rate at 90 days was 56%. Compared to previously published data from our database 2007–2011, we found that a two-point increase in median CBV-ASPECTS was associated with a significant increase in favourable outcomes. Conclusion Computed tomography perfusion imaging as an additional selection criterion significantly increased the rate of favourable clinical outcome in patients treated with mechanical thrombectomy. Although computed tomography perfusion has lost impact within the six-hour period, we still use it in cases beyond six hours as a means to broaden the therapeutic window.


2021 ◽  
pp. 028418512110388
Author(s):  
Dongjun Lee ◽  
Eun Soo Kim ◽  
Yul Lee ◽  
Sang Min Lee ◽  
Dae Young Yoon ◽  
...  

Background Acute hydrocephalus may decrease cerebral perfusion by increasing intracranial pressure. Computed tomography perfusion (CTP) has become a significant adjunct in evaluating regional and global cerebral blood flow (CBF). Purpose To investigate the changes in cerebral perfusion parameters and maximum contrast enhancement (MCE) in patients with hydrocephalus with ventriculoperitoneal shunt (VPS). Material and Methods We performed brain CTP in 45 patients, including those with subarachnoid hemorrhage (SAH)-induced hydrocephalus with VPS (n = 14, G1), hydrocephalus (not related to SAH) with VPS (n = 11, G2), SAH-induced hydrocephalus without VPS (n = 10, G3), and hydrocephalus (not related to SAH) without VPS (n = 10, G4). We measured the cerebral perfusion in the frontal white matter (FWM), centrum semiovale, basal ganglia (BG), and eight cortical lesions of interest and compared the differences in CTP parameters among the groups. Results Between the four groups, cerebral blood volume and MCE in the left FWM and CBF in the right FWM increased significantly in G1 and G2 who underwent VP shunt compared to G3 and G4, whereas perfusion significantly reduced in G3 and G4 who did not undergo VP shunt compared to G1 and G2. MCE in the left BG significantly increased in G2 and decreased in G3 and G4. SAH-induced hydrocephalus showed a lower perfusion than hydrocephalus (not related to SAH) in FWM. Conclusions Perfusion changes in patients with hydrocephalus after VP shunt were seen in the FWM and BG, which appears to be the result of the hydrocephalus reducing brain perfusion in the deep part of the brain. We concluded that SAH slows brain perfusion recovery.


2021 ◽  
pp. 197140092110157
Author(s):  
Arne Potreck ◽  
Alina Falbesaner ◽  
Fatih Seker ◽  
Charlotte S Weyland ◽  
Sibu Mundiyanapurath ◽  
...  

Background and purpose To investigate the reliability and accuracy of Alberta Stroke Program Early Computed Tomography Scores (ASPECTS) derived from flatpanel detector computed tomography pooled blood volume maps compared to non-contrast computed tomography and multidetector computed tomography perfusion cerebral blood volume maps. Methods ASPECTS from pooled blood volume maps were evaluated retrospectively by two experienced readers for 37 consecutive patients with acute middle cerebral artery (MCA) M1 occlusion who underwent flatpanel detector computed tomography perfusion imaging before mechanical thrombectomy between November 2016 and February 2019. For comparison with ASPECTS from non-contrast computed tomography and cerebral blood volume maps, a matched-pair analysis according to pre-stroke modified Rankin scale, age, stroke severity, site of occlusion, time from stroke onset to imaging and final modified thrombolysis in cerebral infarction (mTICI) was performed in a separate group of patients who underwent multimodal computed tomography prior to mechanical thrombectomy between June 2015 and February 2019. Follow-up ASPECTS were derived from either non-contrast computed tomography or from magnetic resonance imaging (in seven patients) one day after mechanical thrombectomy. Results Interrater agreement was best for non-contrast computed tomography ASPECTS (w-kappa = 0.74, vs. w-kappa = 0.63 for cerebral blood volume ASPECTS and w-kappa = 0.53 for pooled blood volume ASPECTS). Also, accuracy, defined as correlation between acute and follow-up ASPECTS, was best for non-contrast computed tomography ASPECTS (Spearman ρ = 0.86 (0.65–0.97), P < 0.001), while it was lower and comparable for pooled blood volume ASPECTS (ρ = 0.58 (0.32–0.79), P < 0.001) and cerebral blood volume ASPECTS (ρ = 0.52 (0.17–0.80), P = 0.001). It was noteworthy that cases of relevant infarct overestimation by two or more ASPECTS regions (compared to follow-up imaging) were observed for both acute pooled blood volume and cerebral blood volume ASPECTS but occurred more often for acute pooled blood volume ASPECTS (25% vs. 5%, P = 0.02). Conclusion Non-contrast computed tomography ASPECTS outperformed both pooled blood volume ASPECTS and cerebral blood volume ASPECTS in accuracy and reliability. Importantly, relevant infarct overestimation was observed more often in pooled blood volume ASPECTS than cerebral blood volume ASPECTS, limiting its present clinical applicability for acute stroke imaging.


Author(s):  
Jai Jai Shiva Shankar ◽  
Gavin Langlands ◽  
Steve Doucette ◽  
Stephen Phillips

AbstractBackground: Computed tomography perfusion (CTP) is increasingly being used in the setting of acute ischemic stroke (AIS). The aim of the current study was to compare the prognostic utility of, and inter-observer variation between, baseline appearances on non-contrast CT (using Alberta Stroke Program Early CT score(ASPECTS)) and on CTP for predicting final infarct volume. We also assessed impact of training on interpretation of these images. Methods: Retrospectively, plain head computed tomography (CT) and CTP images at presentation and CT or diffusion imaging on follow up of patients with AIS were analyzed. The lesion volume on different CTP parameters was then correlated with the final infarct volume. This analysis was done by a Neuroradiologist, a stroke Neurologist and a medical student. Kappa statistics and Intra-class correlation coefficients were used for agreement between readers. Pearson correlation coefficients were used.Results: Thirty eight patients with AIS met all inclusion criteria. There was very good agreement among all readers for the CTP parameters. There was only fair agreement for ASPECT score. Correlation coefficient (r-square) between CTP parameters and final infarct volume showed that cerebral blood volume was the best parameter to predict the final infarct volume followed by cerebral blood flow and time to peak. The best reader to predict the final infarct volume on the initial CT perfusion study was the neuroradiologist followed by medical student and stroke neurologist. Conclusions: Cerebral blood volume defect correlated the best with the final infarct volume. There was a very good inter-observer agreement for all the CTP maps in predicting the final infarct volume despite the wide variation in the experience of the readers.


Sign in / Sign up

Export Citation Format

Share Document