Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis – a machine learning study

2021 ◽  
pp. 197140092199897
Author(s):  
Sarv Priya ◽  
Caitlin Ward ◽  
Thomas Locke ◽  
Neetu Soni ◽  
Ravishankar Pillenahalli Maheshwarappa ◽  
...  

Objectives To evaluate the diagnostic performance of multiple machine learning classifier models derived from first-order histogram texture parameters extracted from T1-weighted contrast-enhanced images in differentiating glioblastoma and primary central nervous system lymphoma. Methods Retrospective study with 97 glioblastoma and 46 primary central nervous system lymphoma patients. Thirty-six different combinations of classifier models and feature selection techniques were evaluated. Five-fold nested cross-validation was performed. Model performance was assessed for whole tumour and largest single slice using receiver operating characteristic curve. Results The cross-validated model performance was relatively similar for the top performing models for both whole tumour and largest single slice (area under the curve 0.909–0.924). However, there was a considerable difference between the worst performing model (logistic regression with full feature set, area under the curve 0.737) and the highest performing model for whole tumour (least absolute shrinkage and selection operator model with correlation filter, area under the curve 0.924). For single slice, the multilayer perceptron model with correlation filter had the highest performance (area under the curve 0.914). No significant difference was seen between the diagnostic performance of the top performing model for both whole tumour and largest single slice. Conclusions T1 contrast-enhanced derived first-order texture analysis can differentiate between glioblastoma and primary central nervous system lymphoma with good diagnostic performance. The machine learning performance can vary significantly depending on the model and feature selection methods. Largest single slice and whole tumour analysis show comparable diagnostic performance.

2018 ◽  
Vol 45 (5) ◽  
pp. E5 ◽  
Author(s):  
Anthony V. Nguyen ◽  
Elizabeth E. Blears ◽  
Evan Ross ◽  
Rishi R. Lall ◽  
Juan Ortega-Barnett

OBJECTIVEGlioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are common intracranial pathologies encountered by neurosurgeons. They often may have similar radiological findings, making diagnosis difficult without surgical biopsy; however, management is quite different between these two entities. Recently, predictive analytics, including machine learning (ML), have garnered attention for their potential to aid in the diagnostic assessment of a variety of pathologies. Several ML algorithms have recently been designed to differentiate GBM from PCNSL radiologically with a high sensitivity and specificity. The objective of this systematic review and meta-analysis was to evaluate the implementation of ML algorithms in differentiating GBM and PCNSL.METHODSThe authors performed a systematic review of the literature using PubMed in accordance with PRISMA guidelines to select and evaluate studies that included themes of ML and brain tumors. These studies were further narrowed down to focus on works published between January 2008 and May 2018 addressing the use of ML in training models to distinguish between GBM and PCNSL on radiological imaging. Outcomes assessed were test characteristics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).RESULTSEight studies were identified addressing use of ML in training classifiers to distinguish between GBM and PCNSL on radiological imaging. ML performed well with the lowest reported AUC being 0.878. In studies in which ML was directly compared with radiologists, ML performed better than or as well as the radiologists. However, when ML was applied to an external data set, it performed more poorly.CONCLUSIONSFew studies have applied ML to solve the problem of differentiating GBM from PCNSL using imaging alone. Of the currently published studies, ML algorithms have demonstrated promising results and certainly have the potential to aid radiologists with difficult cases, which could expedite the neurosurgical decision-making process. It is likely that ML algorithms will help to optimize neurosurgical patient outcomes as well as the cost-effectiveness of neurosurgical care if the problem of overfitting can be overcome.


Sign in / Sign up

Export Citation Format

Share Document