scholarly journals Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering

2019 ◽  
Vol 10 ◽  
pp. 204173141982643 ◽  
Author(s):  
Chinmaya Mahapatra ◽  
Jung-Ju Kim ◽  
Jung-Hwan Lee ◽  
Guang-Zhen Jin ◽  
Jonathan C Knowles ◽  
...  

Bone/cartilage interfacial tissue engineering needs to satisfy the differential properties and architectures of the osteochondral region. Therefore, biphasic or multiphasic scaffolds that aim to mimic the gradient hierarchy are widely used. Here, we find that two differently structured (topographically) three-dimensional scaffolds, namely, “dense” and “nanofibrous” surfaces, show differential stimulation in osteo- and chondro-responses of cells. While the nanofibrous scaffolds accelerate the osteogenesis of mesenchymal stem cells, the dense scaffolds are better in preserving the phenotypes of chondrocytes. Two types of porous scaffolds, generated by a salt-leaching method combined with a phase-separation process using the poly(lactic acid) composition, had a similar level of porosity (~90%) and pore size (~150 μm). The major difference in the surface nanostructure led to substantial changes in the surface area and water hydrophilicity (nanofibrous ≫ dense); as a result, the nanofibrous scaffolds increased the cell-to-matrix adhesion of mesenchymal stem cells significantly while decreasing the cell-to-cell contracts. Importantly, the chondrocytes, when cultured on nanofibrous scaffolds, were prone to lose their phenotype, including reduced chondrogenic expressions (SOX-9, collagen type II, and Aggrecan) and glycosaminoglycan content, which was ascribed to the enhanced cell–matrix adhesion with reduced cell–cell contacts. On the contrary, the osteogenesis of mesenchymal stem cells was significantly accelerated by the improved cell-to-matrix adhesion, as evidenced in the enhanced osteogenic expressions (RUNX2, bone sialoprotein, and osteopontin) and cellular mineralization. Based on these findings, we consider that the dense scaffold is preferentially used for the chondral-part, whereas the nanofibrous structure is suitable for osteo-part, to provide an optimal biphasic matrix environment for osteochondral tissue engineering.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2416 ◽  
Author(s):  
Bo Young Choi ◽  
Elna Paul Chalisserry ◽  
Myoung Hwan Kim ◽  
Hyun Wook Kang ◽  
Il-Whan Choi ◽  
...  

Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine, due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of stem cells. In this study, we demonstrate the influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in tissue-engineered constructs. The tissue engineered scaffolds were fabricated using photopolymerizable gelatin methacryloyl (GelMA) with different concentrations of astaxanthin. The effects of astaxanthin on cellular proliferation in two-dimensional environments were assessed using alamar blue assay and reverse transcription polymerase chain reaction (RT-PCR). Then, rheological properties, chemical structures and the water absorption of the fabricated astaxanthin-incorporated GelMA hydrogels were characterized using NMR analysis, rheological analysis and a swelling ratio test. Finally, the influence in three-dimensional environments of astaxanthin-incorporated GelMA hydrogels on the proliferative potentials of adipose-derived stem cells was assessed using alamar blue assay and the confocal imaging with Live/dead staining. The experimental results of the study indicate that an addition of astaxanthin promises to induce stem cell potency via proliferation, and that it can be a useful tool for a three-dimensional culture system and various tissue engineering applications.


2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


Author(s):  
Marco Domingos ◽  
Antonio Gloria ◽  
Jorge Coelho ◽  
Paulo Bartolo ◽  
Joaquim Ciurana

Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycaprolactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite (nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 µm and to assess the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an increase in polycaprolactone compressive modulus ( E) from 105.5 ± 11.2 to 138.8 ± 12.9 MPa (PCL_nHA) and 217.2 ± 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or PCL_mHA structures.


2011 ◽  
Vol 17 (11-12) ◽  
pp. 1549-1560 ◽  
Author(s):  
Shan-hui Hsu ◽  
Tsung-Bin Huang ◽  
Shun-Jung Cheng ◽  
Su-Ying Weng ◽  
Ching-Lin Tsai ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Wan-Ju Li ◽  
Richard Tuli ◽  
Chukwuka Okafor ◽  
Assia Derfoul ◽  
Keith G Danielson ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5096
Author(s):  
Aipeng Deng ◽  
Yang Yang ◽  
Shimei Du

Electrospinning, the only method that can continuously produce nanofibers, has been widely used to prepare nanofibers for tissue engineering applications. However, electrospinning is not suitable for preparing clinically relevant three-dimensional (3D) nanofibrous scaffolds with hierarchical pore structures. In this study, recombinant human collagen (RHC)/chitosan nanofibers prepared by electrospinning were combined with porous scaffolds produced by freeze drying to fabricate 3D nanofibrous scaffolds. These scaffolds exhibited high porosity (over 80%) and an interconnected porous structure (ranging from sub-micrometers to 200 μm) covered with nanofibers. As confirmed by the characterization results, these scaffolds showed good swelling ability, stability, and adequate mechanical strength, making it possible to use the 3D nanofibrous scaffolds in various tissue engineering applications. In addition, after seven days of cell culturing, NIH 3T3 was infiltrated into the scaffolds while maintaining its morphology and with superior proliferation and viability. These results indicated that the 3D nanofibrous scaffolds hold great promise for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document