salt leaching
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 63)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13589
Author(s):  
Aleksandra Korbut ◽  
Marcin Włodarczyk ◽  
Karolina Rudnicka ◽  
Aleksandra Szwed ◽  
Przemysław Płociński ◽  
...  

In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7730
Author(s):  
Liang Yu ◽  
Shuangshuang Hao ◽  
Xiaodong Nong ◽  
Xiuling Cao ◽  
Chen Zhang ◽  
...  

Interface problems and the destruction of the continuity of the oxide film in the Al matrix usually reduce the corrosion resistance of the material. In this paper, the corrosion resistance of Al matrix composites (AMCs) was improved by introducing the silicon carbide skeletons (SiC3D) obtained with polymer replica technology. SiC3D/6061Al was fabricated by infiltrating molten 6061Al alloy in the oxidized SiC3D using the low-pressure casting method. The corrosion resistance performances of 6061Al and SiC3D/6061Al in NaCl solution were studied by electrochemical, neutral salt spray corrosion (NSS), and salt leaching (SL) tests. Results show corrosion resistance of SiC3D/6061Al is higher than that of 6061Al alloys by open circuit potential (OCP), potentio-dynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) tests. However, NSS and SL tests show the corrosion resistance of SiC3D/6061Al is lower than that of 6061Al alloy. The reason is a corrosion resistant and anti-oxidation network macrostructure with large interface recombination, few concentrated interfaces, and a small specific area that formed in SiC3D/6061Al. SiC3D cannot damage the continuity of the Al2O3 passivating film, and the network macrostructure greatly improves the corrosion resistance performance.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1987
Author(s):  
Pankaj Kumar Choubey ◽  
Nityanand Singh ◽  
Rekha Panda ◽  
Rajesh Kumar Jyothi ◽  
Kyoungkeun Yoo ◽  
...  

Non-availability of rich primary resources of rare earth metals (REMs) and the generation of huge amounts of discarded magnets containing REMs, compelled the researchers to explore the possibilities for the recovery of REMs from discarded magnets. Therefore, the present paper reports the recovery of REMs (Nd, Pr, and Dy) from discarded Nd-Fe-B magnets. The process consists of demagnetization, pre-treatment, and hydrometallurgical processing to recover REMs as salt. Leaching studies indicate that 95.5% Nd, 99.9% Pr, and 99.9% Dy were found to be dissolved at the optimized experimental condition i.e., acid concentration 2 M H2SO4, temperature 75 °C, pulp density 100 g/L, and mixing time 60 min. Solvent extraction technique was tried for the selective extraction/separation of REMs and Fe. The result indicates that 99.1% (24.42 g/L) of Nd along with 90% (1.08 g/L) of Pr and total Fe were co-extracted using 35% Cyanex 272 at organic to aqueous (O/A) ratio 1/1, eq. pH 3.5 in 10 min of mixing time. It requires multistage separation and therefore, not feasible in view of economics. Thus, direct precipitation of REMs salt and iron oxide as pigment was studied using two stages of precipitation at different pH. The obtained precipitate of REMs and Fe hydroxides were dried separately to remove the moisture and further treated at elevated temperature to get pure REMs oxide and red oxide.


2021 ◽  
Vol 232 (11) ◽  
Author(s):  
Karan Rishabhkumar Jain ◽  
Mansour Edraki ◽  
Neil McIntyre

Bioimpacts ◽  
2021 ◽  
Author(s):  
Azam Bozorgi ◽  
Masoud Mozafari ◽  
Mozafar Khazaei ◽  
Mansooreh Soleimani ◽  
Zahra Jamalpoor

Introduction: Fabricating composite scaffolds with improved physicochemical properties as artificial microenvironments are of great interest in bone tissue engineering. Given advantageous properties of nano-hydroxyapatite/chitosan/gelatin (nHA/Cs/Gel) scaffolds, the present study aimed to synthesize a modified nHA/Cs/Gel biomimetic scaffold with improved features. Methods: Pure and copper (Cu)-substituted nHA was synthesized using the chemical precipitation method under controlled pH and temperature. Pure and Cu-substituted nHA/Cs/Gel scaffolds were fabricated by salt-leaching/freeze-drying method. Physicochemical characteristics of nanoparticles and scaffolds were explored using XRD, FTIR, FE-SEM/EDX, and ICP. Besides, scaffold mechanical strength, degradation, porosity, swelling, biomineralization, and cytocompatibility were assessed. Results: Pure and Cu-substituted nHA were synthesized and characterized with appropriate Cu substitution and improved physical properties. All scaffolds were highly porous (porosity >98%) and Cu incorporation reduced porosity from 99.555 ± 0.394% to 98.69 ± 0.80% while enlarged the pore size to more than100 µm. Cu-substitution improved the scaffold mechanical strength and the best result was observed in nHA.Cu5%/Cs/Gel scaffolds by the compressive strength 88.869 ± 19.574 MPa. Furthermore, 3% and 5% Cu-substituted nHA enhanced the scaffold structural stability and supported osteoblast spread, adhesion, survival, mineralization, and proliferation. Moreover, long-term and sustainable Cu release from scaffolds was observed within 28 days. Conclusion: Cu-substituted nHA/Cs/Gel scaffolds mimic the porous structure and mechanical strength of cancellous bone, along with prolonged degradation and Cu release, osteoblast attachment, viability, calcium deposition, and proliferation. Taken together, our results indicate the upgraded properties of nHA.Cu5%/Cs/Gel scaffolds for future applications in bone tissue engineering.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2545
Author(s):  
Jinping Feng ◽  
Hongguang Liu ◽  
Gang Wang ◽  
Rumeng Tian ◽  
Minghai Cao ◽  
...  

Winter irrigation is an effective means of salt leaching, but the long-term effect on salinity is unclear. In 2008–2019, three different soil types of farmlands were selected as the study area by drip irrigation under film mulch combined with periodic winter irrigation in the non-growth period. The salinity of 0–150 cm as well as the survival rate and yield of cotton in the non-growth and growth periods were monitored, respectively. The mass fraction of soil salt decreased rapidly under winter irrigation, and then, the salt content in each observation layer increased with years of cultivation. After 10 years of application, the soil salt content basically stabilized at a low level. In 2008, the salinity of the 0–150 cm observation layer of loamy clay, loam, and sandy loam varied within 6–60, 10–65, and 4–22 g·kg−1; after four winter irrigations in 2019, corresponding values dropped below 5.74, 3, and 4.76 g·kg−1, respectively. The salinity returns rate of the different observation layers all exceeded 40%. The desalination rate of the different soils after four winter irrigations all exceeded 63.52%. Cotton survival rate and yield in different soils were directly proportional to each other. After the second winter irrigation, the survival rates on the different soils all exceeded 60%. The results of this study can provide technical support for the sustainable development of different types of soil, farmers’ income increase, and salinization land improvement.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2288
Author(s):  
Ailton Alves de Carvalho ◽  
Abelardo A. de A. Montenegro ◽  
João L. M. P. de Lima ◽  
Thieres George Freire da Silva ◽  
Elvira Maria Regis Pedrosa ◽  
...  

Water scarcity and changing rainfall distribution have caused uncertainties in relation to agricultural production in semiarid areas. In this context, water reuse for irrigation is a promising alternative, although requiring irrigation and agricultural management. Production of forage plants is strategic for semiarid areas due to their high tolerance to stresses and use as animal fodder. The objective of this work was to evaluate the combined performance of treated wastewater irrigation and mulching on forage sorghum and on soil attributes in Northeast Brazil. Sorghum was cropped in November 2018, three months before the beginning of the hydrologic year, and cultivated over three cycles until April 2019. The experiment was designed with five irrigation depths (60%, 80%, 100%, 120%, and 140% of crop evapotranspiration), and with four soil cover conditions (0% (witness), soil covered with native vegetation, with coconut coir, and with macerated moringa seeds), adopting four replications. Irrigation with treated wastewater promoted linear increases in forage sorghum yield at irrigation depths of up to 140% of crop evapotranspiration. Mulch promoted a 24% increase in productivity in relation to the area where conservation was not practiced, being able to control salinity while also contributing to the higher incorporation of organic matter. Irrigation with treated wastewater had no negative agronomic impacts on soil, once natural rainfall events typical of the Brazilian semiarid region allowed effective salt leaching from shallow sandy soils.


2021 ◽  
Vol 22 (16) ◽  
pp. 8587
Author(s):  
Paweł Piszko ◽  
Marcin Włodarczyk ◽  
Sonia Zielińska ◽  
Małgorzata Gazińska ◽  
Przemysław Płociński ◽  
...  

In this research, we synthesize and characterize poly(glycerol sebacate) pre-polymer (pPGS) (1H NMR, FTiR, GPC, and TGA). Nano-hydroxyapatite (HAp) is synthesized using the wet precipitation method. Next, the materials are used to prepare a PGS-based composite with a 25 wt.% addition of HAp. Microporous composites are formed by means of thermally induced phase separation (TIPS) followed by thermal cross-linking (TCL) and salt leaching (SL). The manufactured microporous materials (PGS and PGS/HAp) are then subjected to imaging by means of SEM and µCT for the porous structure characterization. DSC, TGA, and water contact angle measurements are used for further evaluation of the materials. To assess the cytocompatibility and biological potential of PGS-based composites, preosteoblasts and differentiated hFOB 1.19 osteoblasts are employed as in vitro models. Apart from the cytocompatibility, the scaffolds supported cell adhesion and were readily populated by the hFOB1.19 preosteoblasts. HAp-facilitated scaffolds displayed osteoconductive properties, supporting the terminal differentiation of osteoblasts as indicated by the production of alkaline phosphatase, osteocalcin and osteopontin. Notably, the PGS/HAp scaffolds induced the production of significant amounts of osteoclastogenic cytokines: IL-1β, IL-6 and TNF-α, which induced scaffold remodeling and promoted the reconstruction of bone tissue. Initial biocompatibility tests showed no signs of adverse effects of PGS-based scaffolds toward adult BALB/c mice.


Author(s):  
Neil McIntyre ◽  
Karan Rishabhkumar Jain ◽  
Mansour Edraki
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2454
Author(s):  
Sevakumaran Vigneswari ◽  
Tana Poorani Gurusamy ◽  
Wan M. Khairul ◽  
Abdul Khalil H.P.S. ◽  
Seeram Ramakrishna ◽  
...  

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5–12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document