scholarly journals A case of primary aortic sarcoma with tumor infarction after stent graft placement

2021 ◽  
Vol 10 (11) ◽  
pp. 205846012110633
Author(s):  
Hiroki Nakamura ◽  
Akihiko Kanki ◽  
Hiroyuki Watanabe ◽  
Kentarou Ono ◽  
Noriaki Kuwada ◽  
...  

Primary aortic sarcoma is a very rare disease, and most primary aortic tumors are malignant mesenchymal tumors. We present the case of a 62-year-old man with sudden epigastric and back pain. Contrast-enhanced computed tomography (CT) revealed a mass lesion about 33.8 mm in diameter, in contact with the left side of the abdominal aorta. Impending rupture of an abdominal aortic aneurysm was suspected, so cardiovascular surgery for stent graft placement was performed the same day. Symptoms immediately improved and CT at 3 months postoperatively showed a marked decrease in lesion size, but the lesion subsequently grew again. Fluorodeoxyglucose (FDG)-positron emission tomography/CT was performed due to the possibility of malignant solid tumor, revealing markedly increased FDG accumulation (maximum standardized uptake value, 36.95) in the mass lesion. Primary aortic sarcoma was diagnosed from thoracoscopic biopsy. Here, we report a primary aortic sarcoma that shrank due to tumor infarction after stent graft placement, followed by tumor regrowth.

2020 ◽  
Author(s):  
Giulia Maria Rita De Luca ◽  
Jan Habraken

Abstract Some of the parameters used for the quantification of Positron Emission Tomography (PET) images are the Standardized Uptake Value (SUV)Max, SUV Mean and SUV Peak. In order to assess the significance of an increasing or decreasing of these parameters for diagnostic purposes it is relevant to determine their standard deviation. In this study we present a method to determine the range of statistical variation of the SUV in PET images. Our method is based on dividing an original dataset into subsets of shorter time-frames. The variation between the SUV parameters of the subsets is used to estimate the standard deviation of the of the original acquisition. This method was tested on images of a NEMA quality phantom with acquisition time of 150 s per bed position and foreground to background activity ratio of F18-2-fluoro-2-deoxy-D-glucose (FDG) of 10:1. This original dataset has been reconstructed with different reconstruction lengths, generating new data subsets. The SUV Max, Mean and Peak were calculated for each image in the subsets. Their standard deviation has been calculated per subset for the different spheres included in the phantom. The variation of each subset has then been used to estimate the expected variation between images at 150 s reconstruction length. We report the largest standard deviation of the SUV parameters for the smallest sphere, and the smallest variation for the largest sphere. The expected variation at 150 s reconstruction length does not exceed 6% for the smallest sphere and 2% for the largest sphere, but we report an higher coefficient of variation (up to 30%) for shorter reconstruction lengths. We also report significant differences in the variation of SUV parameters for the larger spheres. With the presented method we are able to determine the standard deviation of SUV parameters only due to and the statistical variation. The method enables us to evaluate the effect of parameter selection and lesion size on the standard deviation, and therefore to evaluate its relevance on the total variation of the SUV value between studies.


2021 ◽  
Author(s):  
Giulia Maria Rita De Luca ◽  
Jan Habraken

Abstract Background: Some of the parameters used for the quantification of Positron Emission Tomography (PET) images are the Standardized Uptake Value (SUV)Max, SUVMean and SUVPeak. In order to assess the significance of an increasing or decreasing of these parameters for diagnostic purposes it is relevant to know their standard deviation. The sources of the standard deviation can be divided in biological and technical. In this study we present a method to determine the technical variation of the SUV in PET images.Results: This method was tested on images of a NEMA quality phantom with spheres of various diameters with full-length acquisition time of 150 s per bed position and foreground to background activity ratio of F18-2-fluoro-2-deoxy-D-glucose (FDG) of 10:1. Our method is based on dividing the full-length 150 s acquisition into subsets of shorter time length and reconstructing the images in the subsets. The SUVMax, Mean and Peak were calculated for each reconstructed image in a subset. The coefficient of deviation of the SUV parameters within each subset has then been used to estimate the expected standard deviation between images at 150 s reconstruction length. We report the largest technical variation of the SUV parameters for the smallest sphere, and the smallest variation for the largest sphere. The expected variation at 150 s reconstruction length does not exceed 6% for the smallest sphere and 2% for the largest sphere. Conclusions: With the presented method we are able to determine the technical variation of SUV. The method enables us to evaluate the effect of parameter selection and lesion size on the technical variation, and therefore to evaluate its relevance on the total variation of the SUV value between studies.


2003 ◽  
Vol 10 (3) ◽  
pp. 684-684 ◽  
Author(s):  
Lukas C. van Dijk ◽  
Marc R. H. M. van Sambeek ◽  
Filippo Cademartiri ◽  
Peter M. T. Pattynama

2020 ◽  
Vol 133 (4) ◽  
pp. 1010-1019 ◽  
Author(s):  
Hiroaki Takei ◽  
Jun Shinoda ◽  
Soko Ikuta ◽  
Takashi Maruyama ◽  
Yoshihiro Muragaki ◽  
...  

OBJECTIVEPositron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification.METHODSIn total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers.RESULTSThere were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG.CONCLUSIONSPET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.


Author(s):  
Keisuke Miyake ◽  
Kenta Suzuki ◽  
Tomoya B Ogawa ◽  
Daisuke Ogawa ◽  
Tetsuhiro Hatakeyama ◽  
...  

Abstract Background The molecular diagnosis of gliomas such as isocitrate dehydrogenase (IDH) status (wild-type [wt] or mutation [mut]) is especially important in the 2016 WHO classification. Positron emission tomography (PET) has afforded molecular and metabolic diagnostic imaging. The present study aimed to define the interrelationship between the 2016 WHO classification of gliomas and the integrated data from PET images using multiple tracers, including 18F-fluorodeoxyglucose ( 18F-FDG), 11C-methionine ( 11C-MET), 18F-fluorothymidine ( 18F-FLT), and 18F-fluoromisonidazole ( 18F-FMISO). Methods This retrospective, single-center study comprised 113 patients with newly diagnosed glioma based on the 2016 WHO criteria. Patients were divided into four glioma subtypes (Mut, Codel, Wt, and glioblastoma multiforme [GBM]). Tumor standardized uptake value (SUV) divided by mean normal cortical SUV (tumor-normal tissue ratio [TNR]) was calculated for 18F-FDG, 11C-MET, and 18F-FLT. Tumor-blood SUV ratio (TBR) was calculated for 18F-FMISO. To assess the diagnostic accuracy of PET tracers in distinguishing glioma subtypes, a comparative analysis of TNRs and TBR as well as the metabolic tumor volume (MTV) were calculated by Scheffe’s multiple comparison procedure for each PET tracer following the Kruskal–Wallis test. Results The differences in mean 18F-FLT TNR and 18F-FMISO TBR were significant between GBM and other glioma subtypes (p &lt; 0.001). Regarding the comparison between Gd-T1WI volumes and 18F-FLT MTVs or 18F-FMISO MTVs, we identified significant differences between Wt and Mut or Codel (p &lt; 0.01). Conclusion Combined administration of four PET tracers might aid in the preoperative differential diagnosis of gliomas according to the 2016 WHO criteria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye Seong ◽  
Yong Hyu Jeong ◽  
Woon Ji Lee ◽  
Jun Hyoung Kim ◽  
Jung Ho Kim ◽  
...  

AbstractKikuchi-Fujimoto disease (KFD) is usually self-limiting, but prolonged systemic symptoms often result in frequent hospital visits, long admission durations, or missed workdays. We investigated the role of fluorine-18 fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in assessing KFD severity. We reviewed the records of 31 adult patients with pathologically confirmed KFD who underwent 18F-FDG PET/CT between November 2007 and April 2018 at a tertiary-care referral hospital. Disease severity was assessed using criteria based on clinical manifestations of advanced KFD. Systemic activated lymph nodes and severity of splenic activation were determined using semi-quantitative and volumetric PET/CT parameters. The median of the mean splenic standardized uptake value (SUVmean) was higher in patients with severe KFD than those with mild KFD (2.38 ± 1.18 vs. 1.79 ± 0.99, p = 0.058). Patients with severe KFD had more systemically activated volume and glycolytic activity than those with mild KFD (total lesion glycolysis: 473.5 ± 504.4 vs. 201.6 ± 363.5, p = 0.024). Multivariate logistic regression showed that myalgia (odds ratio [OR] 0.035; 95% confidence interval [CI] 0.001–0.792; p = 0.035), total lymph node SUVmax (cutoff 9.27; OR 24.734; 95% CI 1.323–462.407; p = 0.032), and spleen SUVmean (cutoff 1.79; OR 37.770; 95% CI 1.769–806.583; p = 0.020) were significantly associated with severe KFD. 18F-FDG PET/CT could be useful in assessing KFD severity.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Alaa Mouminah ◽  
Austin J. Borja ◽  
Emily C. Hancin ◽  
Yu Cheng Chang ◽  
Thomas J. Werner ◽  
...  

Abstract Background 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) is used in the clinical management of oncologic and inflammatory pathologies. It may have utility in detecting radiotherapy (RT)-induced damage of oral tissues. Thus, the aim of the present study was to use FDG-PET/CT to evaluate parotid gland inflammation following RT in patients with head and neck cancer (HNC). Methods This retrospective study included patients with HNC treated with photon, proton, or combined photon/proton RT, in addition to chemotherapy. All patients received FDG-PET/CT imaging pre-treatment and 3 months post-treatment. The average mean standardized uptake value (Avg SUVmean) and the average maximum standardized uptake value (Avg SUVmax) of the left and right parotid glands were determined by global assessment of FDG activity using OsiriX MD software. A two-tailed paired t test was used to compare Avg SUVmean and Avg SUVmax pre- and post-RT. Results Forty-seven HNC patients were included in the study. Parotid gland Avg SUVmean was significantly higher at 3 months post-treatment than pre-treatment (p < 0.05) in patients treated with photon RT, but no significant differences were found between pre- and post-treatment Avg SUVmean in patients treated with proton RT or combined photon/proton RT. Conclusion Our results suggest that photon RT may cause radiation-induced inflammation of the parotid gland, and that proton RT, which distributes less off-target radiation, is a safer treatment alternative.


Sign in / Sign up

Export Citation Format

Share Document