scholarly journals Acid-beta-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation.

1975 ◽  
Vol 23 (6) ◽  
pp. 402-410 ◽  
Author(s):  
L Roizin ◽  
D Orlovskaja ◽  
J C Liu ◽  
A L Carsten

A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase mehtod, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in beta-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequenco of the pathologic process affecting the ultrastructural-chemical organization of the organelle.

Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


2011 ◽  
Vol 154 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Hong Chen ◽  
Xian-Wei Zeng ◽  
Jin-Song Wu ◽  
Ya-Fang Dou ◽  
Yin Wang ◽  
...  

2021 ◽  
Vol 21 ◽  
pp. S437-S438
Author(s):  
Carine Ribeiro Franzon ◽  
Andressa Oliveira Martin Wagner ◽  
Annelise Correa Wengerkievicz Lopes ◽  
Douglas Gebauer Bona ◽  
Talita Bertazzo Schmitz

Author(s):  
Mehrak Mahmoudi ◽  
Piroz Zamankhan ◽  
William Polashenski

The nervous system remains one of the least understood biological structures due in large part to the enormous complexity of this organ. A theoretical model for the transfer of nerve impulses would be valuable for the analysis of various phenomena in the nervous system, which are difficult to study by experiments. The central nervous system is composed of more than 100 billion neurons, through which information is transmitted via nerve impulses. Nerve impulses are not immediately apparent since each impulse may be blocked during transmission, changed from a single impulse into repetitive impulse, or integrated with impulses from other neurons to form highly intricate patterns. In the human central nervous system, a neuron secretes a chemical substance called a neurotransmitter at the synapse, and this transmitter in turn acts on another neuron to cause excitation, inhibition, or some other modification of its sensitivity.


Sign in / Sign up

Export Citation Format

Share Document