scholarly journals The use of three-dimensional printing technology in orthopaedic surgery

2017 ◽  
Vol 25 (1) ◽  
pp. 230949901668407 ◽  
Author(s):  
Tak Man Wong ◽  
Jimmy Jin ◽  
Tak Wing Lau ◽  
Christian Fang ◽  
Chun Hoi Yan ◽  
...  

Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.

2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


2020 ◽  
Vol 5 (7) ◽  
pp. 430-441
Author(s):  
Jasmine N. Levesque ◽  
Ajay Shah ◽  
Seper Ekhtiari ◽  
James R. Yan ◽  
Patrick Thornley ◽  
...  

Three-dimensional printing (3DP) has become more frequently used in surgical specialties in recent years. These uses include pre-operative planning, patient-specific instrumentation (PSI), and patient-specific implant production. The purpose of this review was to understand the current uses of 3DP in orthopaedic surgery, the geographical and temporal trends of its use, and its impact on peri-operative outcomes One-hundred and eight studies (N = 2328) were included, published between 2012 and 2018, with over half based in China. The most commonly used material was titanium. Three-dimensional printing was most commonly reported in trauma (N = 41) and oncology (N = 22). Pre-operative planning was the most common use of 3DP (N = 63), followed by final implants (N = 32) and PSI (N = 22). Take-home message: Overall, 3DP is becoming more common in orthopaedic surgery, with wide range of uses, particularly in complex cases. 3DP may also confer some important peri-operative benefits. Cite this article: EFORT Open Rev 2020;5:430-441. DOI: 10.1302/2058-5241.5.190024


2019 ◽  
Vol 42 (10) ◽  
pp. 558-565
Author(s):  
S Marconi ◽  
E Negrello ◽  
V Mauri ◽  
L Pugliese ◽  
A Peri ◽  
...  

Multi-Detector Computed Tomography is nowadays the gold standard for the pre-operative imaging for several surgical interventions, thanks to its excellent morphological definition. As for vascular structures, only the blood flowing inside vessels can be highlighted, while vessels’ wall remains mostly invisible. Image segmentation and three-dimensional-printing technology can be used to create physical replica of patient-specific anatomy, to be used for the training of novice surgeons in robotic surgery. To this aim, it is fundamental that the model correctly resembles the morphological properties of the structure of interest, especially concerning vessels on which crucial operations are performed during the intervention. To reach the goal, vessels’ actual size must be restored, including information on their wall. Starting from the correlation between vessels’ lumen diameter and their wall thickness, we developed a semi-automatic approach to compute the local vessels’ wall, bringing the vascular structures as close as possible to their actual size. The optimized virtual models are suitable for manufacturing by means of three-dimensional-printing technology to build patient-specific phantoms for the surgical simulation of robotic abdominal interventions. The proposed approach can effectively lead to the generation of vascular models of optimized thickness wall. The feasibility of the approach is also tested on a selection of clinical cases in abdominal surgery, on which the robotic surgery is performed on the three-dimensional-printed replica before the actual intervention.


2016 ◽  
Vol 24 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Chi Li ◽  
Tsz Fung Cheung ◽  
Vei Chen Fan ◽  
Kin Man Sin ◽  
Chrisity Wai Yan Wong ◽  
...  

Three-dimensional (3D) printing is a rapidly advancing technology in the field of surgery. This article reviews its contemporary applications in 3 aspects of surgery, namely, surgical planning, implants and prostheses, and education and training. Three-dimensional printing technology can contribute to surgical planning by depicting precise personalized anatomy and thus a potential improvement in surgical outcome. For implants and prosthesis, the technology might overcome the limitations of conventional methods such as visual discrepancy from the recipient’s body and unmatching anatomy. In addition, 3D printing technology could be integrated into medical school curriculum, supplementing the conventional cadaver-based education and training in anatomy and surgery. Future potential applications of 3D printing in surgery, mainly in the areas of skin, nerve, and vascular graft preparation as well as ear reconstruction, are also discussed. Numerous trials and studies are still ongoing. However, scientists and clinicians are still encountering some limitations of the technology including high cost, long processing time, unsatisfactory mechanical properties, and suboptimal accuracy. These limitations might potentially hamper the applications of this technology in daily clinical practice.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110285
Author(s):  
Kai Xiao ◽  
Bo Xu ◽  
Lin Ding ◽  
Weiguang Yu ◽  
Lei Bao ◽  
...  

Objective To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs). Methods Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications. Results One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21–28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification). Conclusion Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.


2018 ◽  
Vol 222 ◽  
pp. 01013 ◽  
Author(s):  
Katarzyna Pacewicz ◽  
Anna Sobotka ◽  
Łukasz Gołek

Three dimensional printing is a promising new technology to erect construction objects. Around the world in every moment a new prototypes constructions are made by using this method. Three dimensional printing is taken into account as technology which can be used to print constructions in automated way on the Moon or Mars. The raw materials, which can be used with three dimensional printing have to fulfil basic requirements for those which are used in construction. That means that components of printing mortars are made from ingredients easily accessible in area nearby construction site and can be reusable. The cost of printing building objects due to that requirements is comparable to costs of traditional building, which are currently available. However additive techniques of printing needs a dedicated mortars for printer supplying. Characteristic for such mortars is: setting time, compressive strength, followability in the printing system, shape stability of every printed layer, controlling the hydration rate to ensure bonding with the subsequent layer, reusable capabilities, easily accessible raw materials, cost of such mixtures shouldn’t be too high in order to keep 3D printing competitive for traditional ways of building, mortar components should be recyclable and printing process should not influence negatively on an environment and people. All properties of printing mortars are determined by the device for additive application method. In this paper review of available materials used for three dimensional printing technology at construction site is presented. Presented materials were analysed in terms of requirements for building materials technology. Due to the lack of detailed information’s in available literature, regarding to the properties of raw materials, the results of this analysis may be used in the designing of new concrete mixtures for the use in three-dimensional printing technology for construction.


2019 ◽  
Vol 327 ◽  
pp. 108399
Author(s):  
Chun-Cheng Huang ◽  
Yi-Ying Chen ◽  
Yi-Ting Fang ◽  
Yu-Chi Chen ◽  
Chih-Ming Hung

Sign in / Sign up

Export Citation Format

Share Document