scholarly journals Proximal Hamstring Repair: A Biomechanical Analysis of Variable Suture Anchor Constructs

2019 ◽  
Vol 7 (2) ◽  
pp. 232596711882414 ◽  
Author(s):  
Michael B. Gerhardt ◽  
Benjamin S. Assenmacher ◽  
Jorge Chahla

Background: Despite an abundance of literature regarding construct strength for a myriad of anchors and anchor configurations in the shoulder, there remains a paucity of biomechanical studies detailing the efficacy of these implants for proximal hamstring repair. Purpose: To biomechanically evaluate the ultimate failure load and failure mechanism of knotless and knotted anchor configurations for hamstring repair. Study Design: Controlled laboratory study. Methods: A total of 17 cadaveric specimens divided into 3 groups composed of intact hamstring tendons as well as 2 different anchor configurations (all-knotted and all-knotless) underwent first cyclic loading and subsequent maximal loading to failure. This protocol entailed a 10-N preload, followed by 100 cycles incrementally applied from 20 to 200 N at a frequency of 0.5 Hz, and ultimately followed by a load to failure with a loading rate of 33 mm/s. The ultimate failure load and mechanism of failure were recorded for each specimen, as was the maximal displacement of each bone-tendon interface subsequent to maximal loading. Analysis of variance was employed to calculate differences in the maximal load to failure as well as the maximal displacement between the 3 study groups. Holm-Sidak post hoc analysis was applied when necessary. Results: The all-knotless suture anchor construct failed at the highest maximal load of the 3 groups (767.18 ± 93.50 N), including that for the intact tendon group (750.58 ± 172.22 N). There was no statistically significant difference between the all-knotless and intact tendon groups; however, there was a statistically significant difference in load to failure when the all-knotless construct was compared with the all-knotted technique (549.56 ± 20.74 N) ( P = .024). The most common mode of failure in both repair groups was at the suture-tendon interface, whereas the intact tendon group most frequently failed via avulsion of the tendon from its insertion site. Conclusion: Under biomechanical laboratory testing conditions, proximal hamstring repair using all-knotless suture anchors outperformed the all-knotted suture anchor configuration with regard to elongation during cyclic loading and maximal load to failure. Failure in the all-knotted repair group was at the suture-tendon interface in most cases, whereas the all-knotless construct failed most frequently at the musculotendinous junction. Clinical Relevance: No biomechanical studies have clearly identified the optimal anchor configuration to avert proximal hamstring repair failure. Delineating this ideal suture anchor construct and its strength compared with an intact hamstring tendon may alter the current standards for postoperative rehabilitation, which remain extremely conservative and onerous for these patients.

2020 ◽  
Vol 8 (1) ◽  
pp. 232596711989292 ◽  
Author(s):  
Alexander Otto ◽  
Alyssa M. DiCosmo ◽  
Joshua B. Baldino ◽  
Julian Mehl ◽  
Elifho Obopilwe ◽  
...  

Background: Proximal hamstring avulsions are severe tendon injuries and are commonly sports-related. Open and endoscopic techniques as well as different anchor configurations have already been described for proximal hamstring repair. Novel all-suture anchors have been developed to provide decreased bone loss during placement and reduced occupied bone volume when compared with titanium suture anchors. Hypothesis: Complete proximal hamstring avulsions repaired with all-suture anchors will demonstrate equal load to failure and comparable displacement under cyclic loading when compared with titanium suture anchors. Study Design: Controlled laboratory study. Methods: Complete proximal hamstring avulsions were created in 18 paired cadaveric specimens (mean ± SD age, 63.0 ± 10.4 years). Either all-suture anchors or titanium suture anchors were used for repair. Cyclic loading from 10 to 125 N at 1 Hz was performed for 1500 cycles with a material testing machine. Displacement was assessed along anterior and posterior aspects of the tendon repair with optical tracking. Specimens were loaded to failure at a rate of 120 mm/min. Displacement, load to failure, and repair construct stiffness were compared between matched pairs with the Wilcoxon signed-rank test. Correlations were determined by Spearman rho analysis. Results: The all-suture anchors showed significantly higher load-to-failure values when compared with the titanium anchor repairs (799.64 ± 257.1 vs 573.27 ± 89.9 N; P = .008). There was no significant difference in displacement between all-suture anchors and titanium suture anchors at the anterior aspect (6.60 ± 2.2 vs 5.49 ± 1.1 mm; P = .26) or posterior aspect (5.87 ± 2.08 vs 5.23 ± 1.37 mm; P = .678) of the repaired hamstring tendons. Conclusion: All-suture anchors demonstrated similar displacement and superior load to failure when compared with titanium suture anchors. Clinical Relevance: The results of this study suggest that all-suture anchors are an equivalent alternative to titanium suture anchors for proximal hamstring avulsion repair.


2021 ◽  
Vol 9 (9) ◽  
pp. 232596712110316
Author(s):  
Gerardo L. Garcés ◽  
Oscar Martel ◽  
Alejandro Yánez ◽  
Ignacio Manchado-Herrera ◽  
Luci M. Motta

Background: It is not clear whether the mechanical strength of adjustable-loop suspension devices (ALDs) in anterior cruciate ligament (ACL) reconstruction is device dependent and if these constructs are different from those of an interference screw. Purpose: To compare the biomechanical differences of 2 types of ALDs versus an interference screw. Study Design: Controlled laboratory study. Methods: ACL reconstruction was performed on porcine femurs and bovine extensor tendons with 3 types of fixation devices: interference screw, UltraButton (UB) ALD, and TightRope (TR) ALD (n = 10 for each). In addition to specimen testing, isolated testing of the 2 ALDs was performed. The loading protocol consisted of 3 stages: preload (static 150 N load for 5 minutes), cyclic load (50-250 N at 1 Hz for 1000 cycles), and load to failure (crosshead speed 50 mm/min). Displacement at different cycles, ultimate failure load, yield load, stiffness, and failure mode were recorded. Results: In specimen testing, displacement of the ALDs at the 1000th cycle was similar (3.42 ± 1.34 mm for TR and 3.39 ± 0.92 mm for UB), but both were significantly lower than that of the interference screw (7.54 ± 3.18 mm) ( P < .001 for both). The yield load of the UB (547 ± 173 N) was higher than that of the TR (420 ± 72 N) ( P = .033) or the interference screw (386 ± 51 N; P = .013), with no significant difference between the latter 2. In isolated device testing, the ultimate failure load of the TR (862 ± 64 N) was significantly lower than that of the UB (1879 ± 126 N) ( P < .001). Conclusion: Both ALDs showed significantly less displacement in cyclic loading at ultimate failure than the interference screw. The yield load of the UB was significantly higher than that of the other 2. The ultimate failure occurred at a significantly higher load for UB than it did for TR in isolated device testing. Clinical Relevance: Both UB and TR provided stronger fixation than an interference screw. Although difficult to assess, intrinsic differences in the mechanical properties of these ALDs may affect clinical outcomes.


2020 ◽  
Vol 28 (1) ◽  
pp. 230949902090797
Author(s):  
Mao Ye ◽  
Jun Chen ◽  
Feng Hu ◽  
Yanxi Liu ◽  
Yang Tan

Purpose: The aim of this study was to compare the biomechanical properties between the suture fixation technique and the screw fixation technique for tibial eminence fracture (TEF). Methods: The current study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed, Embase, and the Cochrane were searched from inception to January 2019 comparing the suture and the screw fixation technique for TEF. The results of the eligible studies were analyzed in terms of stiffness, ultimate failure load, and displacement after the cyclic testing. Results: Six laboratory studies were included with a total of 114 knees: 57 knees were in the FiberWire suture group and 57 knees were in the single-screw group. The suture group had higher stiffness than the screw group, but there was no statistical difference between these two groups. Ultimate failure load in the suture group was statistically higher than that in the screw group. No statistically significant difference existed in displacement after the cyclic testing between the suture group and the screw group. Conclusion: The FiberWire suture fixation may be biomechanically superior to a single screw fixation in TEF treatment in mature knees regarding ultimate failure load, while no significant difference was found between the two fixations in terms of stiffness and displacement after the cyclic testing.


2018 ◽  
Vol 32 (08) ◽  
pp. 825-832 ◽  
Author(s):  
Seth L. Sherman ◽  
Brandee Black ◽  
Matthew A. Mooberry ◽  
Katie L. Freeman ◽  
Trevor R. Gulbrandsen ◽  
...  

AbstractThe objective of this study is to compare the cyclic loading strength and ultimate failure load in suture anchor repair versus transosseous tunnel repair of patellar tendons using a cadaver model. Twelve cadaveric patella specimens were used (six matched pairs). Dual-energy X-ray absorptiometry (DXA) measurements were performed to ensure equal bone quality among groups. All right knees were assigned to the suture anchor repair group (n = 6), whereas all left knees were assigned to the transosseous bone tunnel group (n = 6). Suture type and repair configuration were equivalent. After the respective procedures were performed, each patella was mounted into a gripping jig. Tensile load was applied at a rate of 1 Hz between magnitudes of 50 and 150 N, 50 and 200 N, 50 and 250 N, and tensile load at a rate of 0.1 mm/s until failure. Failure was defined as a sharp deviation in the linear load versus displacement curve, and failure mode was recorded. DXA measurements demonstrated equivalence of bone quality between the two groups (p > 0.05). During cyclic load testing, there was only a statistically significant difference between the groups with regard to cyclic loading at the 50 to 200 N loading cycle (p = 0.010). There was no statistically significant difference between the groups with regard to ultimate load to failure (p = 0.43). Failure mode within the suture anchor cohort occurred through anchor pullout except for one, which failed through the tendon. All specimens within the transosseous cohort failed through the midsubstance of the tendon except for one, which failed through suture breakage. Suture anchor repair demonstrated a similar biomechanical profile regarding cyclic loading and ultimate load to failure when compared with “gold standard” transosseous tunnel patellar tendon repair with a trend toward less gapping in the suture anchor group. Using suture anchors for repair of the patella tendon has similar biomechanical properties to transpatellar tunnels but may provide other clinical advantages.


2020 ◽  
Vol 8 (7) ◽  
pp. 232596712093581 ◽  
Author(s):  
Yuta Nakanishi ◽  
Yuichi Hoshino ◽  
Kouki Nagamune ◽  
Tetsuya Yamamoto ◽  
Kanto Nagai ◽  
...  

Background: The tie-grip suture can fix radial tears more rigidly than simple conventional sutures. However, one shortcoming is the residual gap at the central margin of the tear. The tie-grip suture was modified to address this issue and named the “cross tie-grip suture.” Purpose/Hypothesis: The purpose of this study was to compare the suture stability and strength among 4 suturing techniques: the original tie-grip, cross tie-grip, and 2 conventional sutures (double horizontal and cross). It was hypothesized that the cross tie-grip suture would show the least displacement and resist the greatest maximum load. Study Design: Controlled laboratory study. Methods: A total of 40 fresh-frozen porcine knees were dissected to acquire 80 menisci; 20 menisci were tested in each suture group. A radial tear was created at the middle third of the meniscal body. Repair was performed with the following: original tie-grip, cross tie-grip, double horizontal, and cross sutures. The mechanical strength of sutured menisci was evaluated using a tensile testing machine. All menisci underwent submaximal loading and load to failure. The gap distance and ultimate failure load were compared using analysis of variance. The failure mode was recorded after load-to-failure testing. Results: Displacement after 500 cycles was significantly smaller in the cross tie-grip group (0.4 ± 0.3 mm) compared with the tie-grip (0.9 ± 0.6 mm), double horizontal (1.2 ± 0.7 mm), and cross suture groups (1.4 ± 0.6 mm) ( P < .05). The ultimate failure load was significantly greater in the cross tie-grip (154.9 ± 29.0 N) and tie-grip (145.2 ± 39.1 N) groups compared with the double horizontal (81.2 ± 19.9 N) and cross suture groups (87.3 ± 17.7 N) ( P < .05). Tissue failure was the most common mode of failure in all groups. Conclusion: Upon repair of radial meniscal tears, the cross tie-grip suture showed less displacement compared with that of the tie-grip, double horizontal, and cross sutures and demonstrated equivalent load to failure to that of the tie-grip suture at time zero. Clinical Relevance: The cross tie-grip suture provided high resistance to displacement after repair of radial tears and may be advantageous in healing for radial meniscal tears.


1998 ◽  
Vol 26 (3) ◽  
pp. 428-432 ◽  
Author(s):  
Gregory C. Berlet ◽  
James A. Johnson ◽  
Andrew D. Milne ◽  
Stuart D. Patterson ◽  
Graham J. W. King

Clinical reports suggest that suture anchors can simplify repair of distal biceps tendon avulsions. In this study, fixation strengths of Mitek and Statak suture anchors were compared with strength of reattachment using transosseous suture tunnels in eight cadaveric radii. Cyclic loading and load-to-failure testing were performed: No specimen failed during testing to 50 N for 3600 cycles; however, four of the Mitek anchors and one of the Statak anchors protruded out of the medullary canal. The mean load to failure of the Mitek suture anchor complexes was 220 54 N, that of the Statak suture anchor complexes was 187 64 N, and that of the transosseous sutures was 307 142 N. There was no significant difference in the failure load or mechanism of failure between the Statak and Mitek anchors. Transosseous sutures failed at significantly greater loads on static testing than the suture anchors. Cyclic loading results suggest that the bony fixation achieved using these three techniques should be sufficient to allow immediate passive mobilization of the elbow after surgery. Protrusion of the suture anchors out of the tuberosity during cyclic loading is a concern because of potential development of a gap at the repair site and interference with forearm rotation.


2021 ◽  
Vol 12 ◽  
pp. 215145932199274
Author(s):  
Hyojune Kim ◽  
Myung Jin Shin ◽  
Erica Kholinne ◽  
Janghyeon Seo ◽  
Duckwoo Ahn ◽  
...  

Purpose: This biomechanical study investigates the optimal number of proximal screws for stable fixation of a 2-part proximal humerus fracture model with a locking plate. Methods: Twenty-four proximal humerus fracture models were included in the study. An unstable 2-part fracture was created and fixed by a locking plate. Cyclic loading and load-to-failure tests were used for the following 4 groups based on the number of screws used: 4-screw, 6-screw, 7-screw, and 9-screw groups. Interfragmentary gaps were measured following cyclic loading and compared. Consequently, the load to failure, maximum displacement, stiffness, and mode of failure at failure point were compared. Results: The interfragmentary gaps for the 4-screw, 6-screw, 7-screw, and 9-screw groups were significantly reduced by 0.24 ± 0.09 mm, 0.08 ± 0.06 mm, 0.05 ± 0.01 mm, and 0.03 ± 0.01 mm following 1000 cyclic loading, respectively. The loads to failure were significantly different between the groups with the 7-screw group showing the highest load to failure. The stiffness of the 7-screw group was superior compared with the 6-screw, 9-screw, and 4-screw groups. The maximum displacement before failure showed a significant difference between the comparative groups with the 4-screw group having the lowest value. The 7-screw group had the least structural failure rate (33.3%). Conclusion: At least 7 screws would be optimal for proximal fragment fixation of proximal humerus fractures with medial comminution to minimize secondary varus collapse or fixation failure. Level of Evidence: Basic science study.


2019 ◽  
Vol 7 (9) ◽  
pp. 232596711987327
Author(s):  
Gilberto Y. Nakama ◽  
Zachary S. Aman ◽  
Hunter W. Storaci ◽  
Alexander S. Kuczmarski ◽  
Joseph J. Krob ◽  
...  

Background: Transtibial pull-out repair of the medial meniscal posterior root (MMPR) has been largely assessed through biomechanical studies. Biomechanically comparing different suture types would further optimize MMPR fixation and affect clinical care. Purpose/Hypothesis: The purpose of this study was to determine the optimal suture material for MMPR fixation. It was hypothesized that ultra high–molecular weight polyethylene (UHMWPE) suture tape would be biomechanically superior to UHMWPE suture and standard suture. Study Design: Controlled laboratory study. Methods: The MMPR attachment was divided in 24 human cadaveric knees and randomly assigned to 3 repair groups: UHMWPE suture tape, UHMWPE suture, and standard suture. Specimens were dissected down to the medial meniscus, and the posterior root attachments were sectioned off the tibia. Two-tunnel transtibial pull-out repair with 2 sutures, as determined by the testing group, was performed. The repair constructs were cyclically loaded between 10 and 30 N at 0.5 Hz for 1000 cycles to mimic the forces experienced on the medial meniscus during postoperative rehabilitation. Displacement was recorded at 1, 50, 100, 500, and 1000 cycles. Ultimate failure load, displacement at failure, and load at 3 mm of displacement (clinical failure) were also recorded. Results: UHMWPE suture tape had significantly less displacement of the medial meniscus when compared with standard suture at 1 (–0.22 mm [95% CI, –0.41 to –0.02]; P = .025) and 50 (–0.35 mm [95% CI, –0.67 to –0.03]; P = .029) cycles. There were no other significant differences observed in displacement between groups at any number of cycles. UHMWPE suture tape had significantly less displacement at the time of failure than standard suture (–3.71 mm [95% CI, –7.17 to –0.24]; P = .034). UHMWPE suture tape had a significantly higher load to reach the clinical failure displacement of 3 mm than UHMWPE suture (15.64 N [95% CI, 0.02 to 31.26]; P = .05). There were no significant differences in ultimate failure load between groups. Conclusion: The meniscal root repair construct with UHMWPE suture tape may be stronger and less prone to displacement than that with standard suture or UHMWPE suture. Clinical Relevance: UHMWPE suture tape may provide better clinical results compared with UHMWPE suture and standard suture.


2020 ◽  
Vol 9 (6) ◽  
pp. 285-292
Author(s):  
Zhanwen Wang ◽  
Hong Li ◽  
Zeling Long ◽  
Subin Lin ◽  
Andrew R. Thoreson ◽  
...  

Aims Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots. Methods A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded. Results The mean load to create a 3 mm gap formation in the DRSK and DRS groups was significantly higher than in the SB group. The DRSK group had the highest load to failure with a mean ultimate failure load of 395.0 N (SD 56.8) compared to the SB and DRS groups, which recorded 147.1 N (SD 34.3) and 285.9 N (SD 89.8), respectively (p < 0.001 for both). The DRS group showed a significantly higher mean failure load than the SB group (p = 0.006). Both the DRS and DRSK groups showed significantly higher mean stiffness than the SB group. Conclusion The biomechanical properties of the DRS technique were significantly improved compared to the SB technique. The DRS technique with medial row knots showed superior biomechanical performance than the DRS technique alone.


1993 ◽  
Vol 20 (6) ◽  
pp. 969-979
Author(s):  
J. L. Dawe ◽  
G. G. Aridru

Two series of post-tensioned concrete masonry walls subjected to uniform lateral loading were tested to investigate their flexural strength behaviour. Each series of walls consisted of four full-scale prestressed specimens, with varying levels of prestressing force, and one reinforced specimen. Of particular interest were the load–deflection curves, initial cracking loads, wall stiffness, crack patterns, and ultimate failure loads. An air bag test apparatus was used for applying lateral uniform pressures to the specimens. Results of this experimental investigation showed that, for a given wall thickness, increased prestressing force increases the cracking load, initial wall stiffness, and ultimate failure load. The results have established a linear relationship between increased prestressing force and initial cracking load, initial wall stiffness, and ultimate failure load. The proposed model, which takes into account changes in wall stiffness after initial cracking of the wall, accurately predicts wall behaviour. Key words: masonry, prestressed, walls, strength, behaviour, uniform, pressure, experimental, analytical.


Sign in / Sign up

Export Citation Format

Share Document