scholarly journals Remnant Preserving or Augmentation SB PCL Reconstruction: Tips and Tricks

2019 ◽  
Vol 7 (11_suppl6) ◽  
pp. 2325967119S0045
Author(s):  
Bobby Natanel Nelwan

Injury to the Posterior Cruciate Ligament (PCL) is thought to account for 3% to 20% of all knee ligament injuries. Accurate diagnosis of the PCL injury is the first step in determining appropriate management. Approximately 60% of PCL injuries are associated with tearing of the Posterolateral Corner (PLC) structures. When the surgery, arthroscopy PCL reconstruction, is decided then we have to think how and what the best technique will be used to reconstruct. Various techniques of PCL Reconstruction Arthroscopy are known that based on research. According the position of PCL, the procedure of reconstruction is more difficult than ACL one. If combined with PLC rupture, all the structures will be reconstructed in one step. Will be proposed the tips and tricks how to do arthroscopy remnant preserving or augmentation single bundle PCL reconstruction, such as: how to preserve the remnant, how to find the position of tibial attachment and what the landmark, how to deliver the graft into the tunnels so preventing “killer turn” on the posterior part of joint, and how to do the proper rehabilitation. By using the Posterior Medial Portal, working with Remnant Preserved of PCL Reconstruction will be made easier. Joint line of medial tibial plateau as a landmark to find the tibial tunnel. About 1.5 cm below the joint line, the point of tibial tunnel is made or directly finding the edge of the ‘shelf’ where the tunnel is made on there. The remnant will be split and the graft will be laid in between. A strong suture material is used to pull the graft with all in side technique. The tibial part of the graft goes in first through the anterolateral portal following the suture material, go into between the remnant and go into the tibial tunnel from posterior to anterior (inside out). The femoral part of the graft will go into the joint together with the wire that carrying the distal end of the graft go into the femoral tunnel. After that we make the finalization of procedure. Finally, a special rehab program is needed to get the good result of PCL reconstruction as a whole.

Author(s):  
Christopher Kim ◽  
Dustin Baker ◽  
Brian Albers ◽  
Scott G. Kaar

Abstract Introduction It is hypothesized that anatomic tunnel placement will create tunnels with violation of the posterior cortex and subsequently an oblique aperture that is not circumferentially surrounded by bone. In this article, we aimed to characterize posterior cruciate ligament (PCL) tibial tunnel using a three-dimensional (3D) computed tomography (CT) model. Methods Ten normal knee CTs with the patella, femur, and fibula removed were used. Simulated 11 mm PCL tibial tunnels were created at 55, 50, 45, and 40 degrees. The morphology of the posterior proximal tibial exit was examined with 3D modeling software. The length of tunnel not circumferentially covered (cortex violation) was measured to where the tibial tunnel became circumferential. The surface area and volume of the cylinder both in contact with the tibial bone and that not in contact with the tibia were determined. The percentages of the stick-out length surface area and volume not in contact with bone were calculated. Results The mean stick-out length of uncovered graft at 55, 50, 45, and 40 degrees were 26.3, 20.5, 17.3, and 12.7 mm, respectively. The mean volume of exposed graft at 55, 50, 45, and 40 degrees were 840.8, 596.2, 425.6, and 302.9 mm3, respectively. The mean percent of volume of exposed graft at 55, 50, 45, and 40 degrees were 32, 29, 25, and 24%, respectively. The mean surface of exposed graft at 55, 50, 45, and 40 degrees were 372.2, 280.4, 208.8, and 153.3 mm2, respectively. The mean percent of surface area of exposed graft at 55, 50, 45, and 40 degrees were 40, 39, 34, and 34%, respectively. Conclusion Anatomic tibial tunnel creation using standard transtibial PCL reconstruction techniques consistently risks posterior tibial cortex violation and creation of an oblique aperture posteriorly. This risk is decreased with decreasing the angle of the tibial tunnel, though the posterior cortex is still compromised with angles as low as 40 degrees. With posterior cortex violation, a surgeon should be aware that a graft within the tunnel or socket posteriorly may not be fully in contact with bone. This is especially relevant with inlay and socket techniques.


Author(s):  
Stockton Troyer ◽  
Nicolas G Anchustegui ◽  
Connor G Richmond ◽  
Peter C Cannamela ◽  
Aleksei Dingel ◽  
...  

BackgroundAnatomic studies of the paediatric posterior cruciate ligament (PCL) demonstrate that the tibial attachment spans the epiphysis, physis and metaphysis. To better reproduce the anatomy of the PCL and avoid direct physeal injury, a double-bundle PCL reconstruction technique that includes both an all-epiphysial and an all-metaphyseal tibial tunnel has been proposed. The purpose of this study was to evaluate tibial tunnel placement in a paediatric double-bundle PCL reconstruction technique that avoids direct physeal injury using a 3-D computer model.MethodsTen skeletally immature cadaveric knee specimens (ages 5–11) were used to create 3-D model reconstructions from CT scans. All-metaphyseal and all-epiphysial tibial tunnels were simulated with the goal of maintaining adequate spacing (≥2 mm) between the tibial physis and tunnels to avoid injury. The all-metaphyseal tunnel, simulated at sizes of 5, 6 and 7 mm, entered anteriorly, below the tibial tubercle (apophysis) and exited posteriorly in the metaphyseal PCL footprint, distal to the proximal tibial physis. Four-millimetre all-epiphysial proximal tibial tunnels were simulated to enter the epiphysis anteromedially and exit posteriorly at the central epiphysial region of the PCL footprint, proximal to the physis. The distance was measured from the all-metaphyseal tunnels to the physis posteriorly and from the all-epiphysial tunnels to the physis, both anteriorly and posteriorly.ResultsIn all specimens, the 4 mm all-epiphysial tunnel and the 5, 6 and 7 mm all-metaphyseal tunnels maintained adequate spacing, ≥2 mm from the physis. In the specimens aged 5–7 years, the 5, 6 and 7 mm all-metaphyseal tunnels measured a mean distance of 3.5, 2.8 and 2.5 mm from the physis, respectively. In the specimens aged 8–11 years, the 5, 6 and 7 mm all-metaphyseal tunnels measured a mean distance of 3.4, 2.9 and 2.6 mm from the physis. In the specimens aged 5–7 years, the all-epiphysial tunnel measured a mean of 2.1 mm to the physis anteriorly and a mean of 2.8 mm posteriorly. In the specimens aged 8–11 years, the all-epiphysial tunnel measured a mean of 2.2 mm to the physis anteriorly and 2.4 mm posteriorly.ConclusionThese computer-aided 3-D models of paediatric knees illustrate that 5, 6 and 7 mm all-metaphyseal tunnels as well as 4 mm all-epiphysial tunnels can be placed without direct injury to the proximal tibial physis. The margin of error for direct physeal injury is small, especially for the all-epiphysial tunnel. Further, the all-epiphysial tunnel, while reproducing the anatomy of the PCL epiphysial attachment, may also produce a more extreme ‘killer turn’ of the graft. Modifications to the all-epiphysial tunnel may be considered to reduce the impact of the high ‘killer turn’ angle on the tibia.Level of evidenceIV.


2019 ◽  
Vol 48 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Takeshi Oshima ◽  
Sven Putnis ◽  
Samuel Grasso ◽  
Antonio Klasan ◽  
David Anthony Parker

Background: The combined influence of anatomic and operative factors affecting graft healing after anterior cruciate ligament (ACL) reconstruction within the femoral notch is not well understood. Purpose: To determine the influence of graft size and orientation in relation to femoral notch anatomy, with the signal/noise quotient (SNQ) of the graft used as a measure of graft healing after primary single-bundle ACL reconstruction. Study Design: Case series; Level of evidence, 4. Methods: A total of 98 patients with a minimum 2-year follow-up after primary single-bundle ACL reconstruction with hamstring tendon autografts were included. Graft healing was evaluated at 1 year on magnetic resonance imaging (MRI) scan as the mean SNQ measured from 3 regions situated at sites at the proximal, middle, and distal graft. Patient characteristics, chondropenia severity score, tunnel sizes, tunnel locations, graft bending angle (GBA), graft sagittal angle, posterior tibial slope (PTS), graft length, graft volume, femoral notch volume, and graft-notch volume ratio (measured using postoperative 3-T high-resolution MRI) were evaluated to determine any association with 1-year graft healing. The correlation between 1-year graft healing and clinical outcome at minimum 2 years was also assessed. Results: There was no significant difference in mean SNQ between male and female patients ( P > .05). Univariate regression analysis showed that a low femoral tunnel ( P = .005), lateral tibial tunnel ( P = .009), large femoral tunnel ( P = .011), large tibial tunnel ( P < .001), steep lateral PTS ( P = .010), steep medial PTS ( P = .004), acute graft sagittal angle ( P < .001), acute GBA ( P < .001), large graft volume ( P = .003), and high graft-notch volume ratio ( P < .001) were all associated with higher graft SNQ values. A multivariate regression analysis showed 2 significant factors: a large graft-notch volume ratio ( P = .001) and an acute GBA ( P = .004). The 1-year SNQ had a weak correlation with 2-year Tegner Activity Scale score ( r = 0.227; P = .026) but no other clinical findings, such as International Knee Documentation Committee subjective and Lysholm scores and anterior tibial translation side-to-side difference. Conclusion: The 1-year SNQ value had a significant positive association with graft-notch volume ratio and GBA. Both graft size and graft orientation appeared to have a significant influence on graft healing as assessed on 1-year high-resolution MRI scan.


2019 ◽  
Vol 7 (11_suppl6) ◽  
pp. 2325967119S0048
Author(s):  
Prettysia Suvarly ◽  
Nyoman Aditya Sindunata ◽  
Lasa Dhakka Siahaan ◽  
Tommy Mandagi ◽  
John Butarbutar

Introduction: Posterior cruciate ligament (PCL) reconstruction needs a large and long graft. An allograft is a preferable option for thicker graft but its availability is limited in Indonesia. Alternatively, autograft needs to be folded several times for sufficient thickness but it will be shorter and only applicable for the inside-out method. We present a case of PCL reconstruction using a double adjustable button fixation with the outside-in tibia tunneling method. Case Presentation: A fifty-five-year-old male came to our office with an unstable right knee after he fell 1 month ago. Physical examination showed positive posterior drawer and mild right knee effusion, other findings were normal. MRI revealed a total PCL rupture. Two weeks later, the PCL reconstruction was done using autograft from gracillis and semitendinous. A large adjustable button was placed on the tibia tunnel, using the outside-in technique. Knee was stable postoperatively. Discussion: PCL reconstruction using double adjustable buttons was chosen to accommodate larger but shorter autografts. The outside-in tibial tunnel has less risk of graft laxity less expensive and more simple technically compared to inside-out adjustable button tunnel. Conclusion: Tibial fixation using an adjustable large button should be considered in PCL reconstruction with short autograft.


2017 ◽  
Vol 5 (2_suppl2) ◽  
pp. 2325967117S0009
Author(s):  
Sang Hak Lee ◽  
Kyung Hk Yoon ◽  
Chan Il Bae

Purpose: Tibial tunnel-independent drilling has attracted increased interest in recent years for anatomic anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare the geometry and position of the femoral tunnel between the anteromedial portal (AMP) and outside-in (OI) techniques after anatomic single-bundle ACL reconstruction. Methods: We prospectively evaluated 82 patients undergoing single-bundle ACL reconstruction with hamstring tendon autografts using either the AMP (n=40) or OI (n=42) technique. The locations of the tibial and femoral tunnel apertures were assessed by immediate postoperative 3-dimensional computed tomography (3D CT) imaging with OsiriX imaging software. The femoral graft bending angle, femoral tunnel aperture shape (height/width ratio), femoral tunnel length, and posterior wall breakage were also measured. Results: The two techniques did not differ significantly in the femoral tunnel position perpendicular to the Blumensaat line. However, the mean femoral tunnel position parallel to the Blumensaat line was more caudally positioned in the AMP group than in the OI group (P=0.025) The two groups did not differ significantly in tibial tunnel position. The mean femoral tunnel length did not differ between the AMP (36.1±0.33 mm) and OI groups (35.6±0.37 mm; P=0.548) The mean femoral graft angle in the OI group (99.6°±7.1°) was significantly more acute than that of the AMP group (108.9°±10.2°) (p < 0.0001). The mean height/width ratio of the AMP group (1.21±0.20) was significantly more ellipsoidal than that of the OI group (1.07±0.09) (p < 0.0001). Posterior wall breakage was detected in 3 cases (7.5%), all in the AMP group. Conclusions: After single-bundle anatomic ACL reconstruction, 3D CT showed a significantly shallower femoral tunnel in the AMP group than in the OI group. The AMP group had a more ellipsoidal femoral tunnel with a risk of posterior wall breakage than the OI group. The OI group showed a more acute bending angle of the femoral tunnel than the AMP group. [Figure: see text][Figure: see text]


2017 ◽  
Vol 46 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Rui Wang ◽  
Bin Xu ◽  
Lei Wu ◽  
Honggang Xu

Objective Arthroscopy is the most popular technique in posterior cruciate ligament (PCL) reconstruction surgery. However, no consensus on long-term outcomes after arthroscopic PCL reconstruction has been reached. This study was performed to evaluate the long-term outcomes after arthroscopic autologous hamstring or allogeneic tendon single-bundle reconstruction of the PCL. Methods Fifty-eight patients who underwent arthroscopic PCL reconstruction in Anhui, China from 2007 to 2009 were included. The follow-up period ranged from 56 to 83 months. During the follow-up, the Lysholm knee score and Tegner activity score were used to assess knee function. The KT-2000 arthrometer (MEDmetric Corp., San Diego, CA, USA) was used to assess the stability of the reconstructed PCL. Results The mean Lysholm score, mean Tegner score, and mean forward and backward displacements were not significantly different between the final follow-up and 1 year after the surgery. Additionally, no significant differences were observed in any of the above-mentioned parameters between autologous and allogeneic reconstruction at the final follow-up. Conclusion Both autologous and allogeneic reconstruction had few complications and satisfactory long-term outcomes.


2005 ◽  
Vol 33 (5) ◽  
pp. 719-725 ◽  
Author(s):  
Stephen M. Howell ◽  
Phil Roos ◽  
Maury L. Hull

Background Despite increasing attention on fixation of a soft tissue anterior cruciate ligament graft in the tibia, there have been no studies on the use of a bone dowel as a joint line fixation device for promoting fixation properties, especially stiffness at the time of implantation. Purpose To determine whether compacting a bone dowel into the tibial tunnel improves fixation stiffness, yield load, and resistance to slippage of a soft tissue anterior cruciate ligament graft. Study Design Controlled laboratory study. Methods A double-looped tendon graft was fixed at the distal end of the tibial tunnel with a WasherLoc in 24 calf tibias. The tibial tunnels were treated with or without a dowel of cancellous bone. The bone dowel was harvested from the tibial tunnel and then compacted into a tapered space anterior to the anterior cruciate ligament graft as a joint line fixation device. A cyclic load and measurement test was administered to determine fixation stiffness, yield load, slippage, and failure mode. Results The specimens with the bone dowel had 58 N/mm more stiffness (P =. 04); however, the yield load and resistance to slippage were similar in specimens with and without the bone dowel. Conclusions A bone dowel harvested from the tibial tunnel can be used as a joint line fixation device in series with a distal fixation method to improve initial fixation stiffness and increase the fit, which is known to enhance tendon graft-to-bone healing in the tibia.


Author(s):  
Rong Ying Huang ◽  
Hong Guang Zheng ◽  
Qiang Xu

Anterior cruciate ligament injuries commonly in traffic accident, sports activities and extreme sports. Anterior cruciate ligament reconstruction is a common practice to help the patients restore the knee stability. However, there is no previous comparison study of single bundle reconstruction, double-femoral double-tibial tunnel reconstruction, single-femoral double-tibial tunnel reconstruction, and double-femoral single-tibial tunnel reconstruction with respect to biomechanical characteristics such as rotational stability, force and stress inside the ligament and grafts, stresses inside the soft tissues. In this study, we developed a pair of three-dimensional finite element models of a lower extremity including femur, tibia, fibula, cartilage, meniscus, and four major ligaments at 0°,25°,60° and 80°of knee flexion. Based on the intact models, single bundle reconstruction, double-femoral double-tibial tunnel reconstruction, single-femoral double-tibial tunnel reconstruction, and double-femoral single-tibial tunnel reconstruction models were also developed. Then, the anterior tibial translations, the forces and stresses inside the ACL and ACL replacements, as well as the stresses inside the menisci, femoral and tibial cartilage were predicted under a combined rotatory load of 10Nm valgus moment and 5 Nm internal torque, respectively using finite element analysis. The rotational stability, ligament forces and stresses in the menisci, femoral and tibial cartilage following double bundle augmentation were superior to the other reconstruction techniques, while there is little advantage in ligament stress compared to that of the single bundle reconstruction. We conclude that double-femoral double-tibial tunnel reconstruction may have advantages with regard to biomechanical characteristics such as rotational stability, force inside the ligament and grafts, stresses inside the soft tissues.


Author(s):  
Sunil Chandrashekar ◽  
Manjunath A. N. ◽  
Shivakumar M. S.

<p class="abstract">The purpose of this study is to evaluate tibial and femoral tunnel diameter following single bundle anterior cruciate ligament (ACL) reconstruction and correlation between tunnel enlargement and clinical outcome. Twelve patients who underwent primary arthroscopic single bundle ACL reconstruction with hamstring graft were included in prospective case series. Preoperative clinical evaluation was performed using international knee documentation committee (IKDC) subjective score and grade, Tegner knee score and Lysholm knee score. Computed tomography (CT) evaluation of the femoral and tibial tunnels were done on post-operative day (POD) 1 and at a mean follow up of 9 months (range 7-12 months) and were compared with functional scores. Our study shows significant tibial and femoral tunnel enlargement on CT scan at 9 months (range 7-12 months) postoperatively. All the clinical evaluation scales showed improvement postoperatively. The mean average femoral tunnel diameter increased significantly (p&lt;0.001) from 8.17±0.57 to 9.08±0.660 (10%) and tibial tunnel diameter increased significantly (p&lt;0.001) from 8.08±0.669 to 9.07±0.601 (11%) postoperatively at a mean follow up of 9 months (range 7-12 months). No statistically significant difference between tunnel enlargement and clinical values were found. In our current prospective CT based study, we conclude use of extracortical fixation of femoral tunnel with stronger fixation of the tibial tunnel, tunnel orientation and anatomic fixation close to the joint line along with less aggressive rehabilitation protocol with use of extension knee brace may result in minimization of tunnel widening with quadrupled hamstring autograft.</p>


Sign in / Sign up

Export Citation Format

Share Document