scholarly journals Novel LRPPRC Mutation in a Boy With Mild Leigh Syndrome, French–Canadian Type Outside of Québec

2017 ◽  
Vol 4 ◽  
pp. 2329048X1773763 ◽  
Author(s):  
Velda Xinying Han ◽  
Teresa S. Tan ◽  
Furene S. Wang ◽  
Stacey Kiat-Hong Tay

Background: Leigh syndrome, French–Canadian type is unique to patients from a genetic isolate in the Saguenay–Lac-Saint-Jean region of Québec. It has also been recently described in 10 patients with LRPPRC mutation outside of Québec. It is an autosomal recessive genetic disorder with fatal metabolic crisis and severe neurological morbidity in infancy caused by LRPPRC mutation. Methods and Results: The authors report a boy with a novel LRPPRC compound heterozygous missense mutations c.3130C>T, c.3430C>T, and c.4078G>A found on whole-exome sequencing which correlated with isolated cytochrome c-oxidase deficiency found in skeletal muscle. Conclusion: LRPPRC mutation is a rare cause of cytochrome c-oxidase–deficient form of Leigh syndrome outside of Québec. Our patient broadens the spectrum of phenotypes of Leigh syndrome, French–Canadian type. LRPPRC mutation should be considered in children with early childhood neurodegenerative disorder, even in the absence of metabolic crisis. Early evaluation with whole-exome sequencing is useful for early diagnosis and for genetic counseling.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hosneara Akter ◽  
Mohammad Shahnoor Hossain ◽  
Nushrat Jahan Dity ◽  
Md. Atikur Rahaman ◽  
K. M. Furkan Uddin ◽  
...  

AbstractCollectively, rare genetic diseases affect a significant number of individuals worldwide. In this study, we have conducted whole-exome sequencing (WES) and identified underlying pathogenic or likely pathogenic variants in five children with rare genetic diseases. We present evidence for disease-causing autosomal recessive variants in a range of disease-associated genes such as DHH-associated 46,XY gonadal dysgenesis (GD) or 46,XY sex reversal 7, GNPTAB-associated mucolipidosis II alpha/beta (ML II), BBS1-associated Bardet–Biedl Syndrome (BBS), SURF1-associated Leigh Syndrome (LS) and AP4B1-associated spastic paraplegia-47 (SPG47) in unrelated affected members from Bangladesh. Our analysis pipeline detected three homozygous mutations, including a novel c. 863 G > C (p.Pro288Arg) variant in DHH, and two compound heterozygous variants, including two novel variants: c.2972dupT (p.Met991Ilefs*) in GNPTAB and c.229 G > C (p.Gly77Arg) in SURF1. All mutations were validated by Sanger sequencing. Collectively, this study adds to the genetic heterogeneity of rare genetic diseases and is the first report elucidating the genetic profile of (consanguineous and nonconsanguineous) rare genetic diseases in the Bangladesh population.


2017 ◽  
Vol 60 (12) ◽  
pp. 635-638 ◽  
Author(s):  
Ryojun Takeda ◽  
Masaki Takagi ◽  
Hiroyuki Shinohara ◽  
Hiroshi Futagawa ◽  
Satoshi Narumi ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Lara Pemberton ◽  
Robert Barker ◽  
Anna Cockell ◽  
Vijaya Ramachandran ◽  
Andrea Haworth ◽  
...  

Abstract Background Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. Case presentation In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. Conclusions This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities.


2020 ◽  
Vol 8 ◽  
pp. 205031212092265
Author(s):  
Adiratna Mat Ripen ◽  
Hamidah Ghani ◽  
Chai Teng Chear ◽  
Mei Yee Chiow ◽  
Sharifah Nurul Husna Syed Yahya ◽  
...  

Objectives: A pair of female Malay monozygotic twins who presented with recurrent upper respiratory tract infections, hepatosplenomegaly, bronchiectasis and bicytopenia were recruited in this study. Both patients were suspected with primary immunodeficiency diseases. However, the definite diagnosis was not clear due to complex disease phenotypes. The objective of this study was to identify the causative gene mutation in these patients. Methods: Lymphocyte subset enumeration test and whole exome sequencing were performed. Results: We identified a compound heterozygous CR2 mutation (c.1916G>A and c.2012G>A) in both patients. These variants were then confirmed using Sanger sequencing. Conclusion: Whole exome sequencing analysis of the monozygotic twins revealed compound heterozygous missense mutations in CR2.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1034-1034
Author(s):  
Tomas Racek ◽  
Jacek Puchalka ◽  
Naschla Kohistani ◽  
Christoph Klein

Abstract Congenital neutropenia (CN) is a heterogeneous disorder. More than 30 distinct genetic defects have been discovered in patients with genetic diseases associated with decreased numbers of peripheral neutrophil granulocytes. Currently, most molecular diagnostic laboratories use Sanger-based sequencing techniques to define disease-causing mutations in patients with CN. In approximately 50% of patients no known genetic disorder can be found. To identify novel genes that can be causative for unexplained CN cases we embarked on next-generation whole-exome sequencing using SOLiD 5500™ and Ion Proton™ sequencers. Up to date we sequenced whole exomes of 49 families, in which children were diagnosed with CN. The fragment libraries were constructed using the SureSelect™ V4+UTRs System (Agilent) allowing us to target whole coding sequence and the majority of UTRs of human genome (approx. 71 Mb). The vast majority of the families were analysed in the “Trio” approach and suitable homozygous or compound heterozygous rare variations (frequency below 1%) in protein coding regions or in splice sites were chosen for further validations. In seven cases mutations previously described as causative for neutropenia were identified including G6PC3, HAX1, and ELANE. Four other rare variants are currently being analysed for their potential to cause CN. In 35 patients, no plausible candidate could be identified so far. When we assessed variants within the genes related to CN, our data revealed unequal coverage pattern over these genes. Around 10% of the exons were insufficiently covered (coverage of less than 10) to allow for reliable variant and genotype call. These facts limit the power of whole exome sequencing as a diagnostic tool, as mutations at the non-covered positions cannot be ruled out, and demonstrate the need of an alternative comprehensive approach. We are currently assessing sensitivity and specificity of a robust, rapid, and cost-effective approach that comprehensively analyses the sequence of 34 CN-relevant genes. Our approach is based on enrichment of specific exon regions by amplification using custom made AmpliSeq™ (Life Technologies) panel. For 25 genes we are able to sequence coding region as well as both UTR sequences, for 9 genes sequencing is limited to coding regions. This approach will provide a reliable, quick, and inexpensive diagnostic strategy for CN patients which will be offered free-of-charge to patients worldwide, independent of ethnic, national, or financial considerations. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document