Heavy-tailed distributions for building stock data

2018 ◽  
Vol 46 (7) ◽  
pp. 1281-1296 ◽  
Author(s):  
Patrick Erik Bradley ◽  
Martin Behnisch

The question of inferring the owner of a set of building stocks (e.g. from which country the buildings are taken) from building-related quantities like number of buildings or types of building event histories necessitates the knowledge of their distributions in order to compare them. If the distribution function is a power law, then a version of the 80/20 rule can be applied to describe the variable. This distribution is an example of a heavy-tailed distribution; another example is the log-normal distribution. Heavy-tailed distributions have the property that studying the effects of the few large values already yields most of the overall effect of the whole quantity. For example, if reducing the CO2 emissions of the buildings of a country is the issue, then in case of a heavy-tailed distribution, only the effects of the relatively few large cities need to be considered. It is shown that the number of buildings in German municipalities or counties or the number of building-related event histories of a certain vanished building stock follow a heavy-tailed distribution and give evidence for the type of underlying distribution. The methodology used is a recent statistical framework for discerning power law and other heavy-tailed distributions in empirical data.

2003 ◽  
Vol 40 (3) ◽  
pp. 803-806 ◽  
Author(s):  
Jinwen Chen

It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.


2018 ◽  
Vol 13 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Yifei Li ◽  
Lei Shi ◽  
Neil Allan ◽  
John Evans

AbstractHeavy-tailed distributions have been observed for various financial risks and papers have observed that these heavy-tailed distributions are power law distributions. The breakdown of a power law distribution is also seen as an indicator of a tipping point being reached and a system then moves from stability through instability to a new equilibrium. In this paper, we analyse the distribution of operational risk losses in US banks, credit defaults in US corporates and market risk events in the US during the global financial crisis (GFC). We conclude that market risk and credit risk do not follow a power law distribution, and even though operational risk follows a power law distribution, there is a better distribution fit for operational risk. We also conclude that whilst there is evidence that credit defaults and market risks did reach a tipping point, operational risk losses did not. We conclude that the government intervention in the banking system during the GFC was a possible cause of banks avoiding a tipping point.


2020 ◽  
Vol 8 (1) ◽  
pp. 373-395
Author(s):  
Courtney Vanderford ◽  
Yongli Sang ◽  
Xin Dang

AbstractStandard Gini correlation plays an important role in measuring the dependence between random variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmetric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored. The influence function approach is utilized to study the robustness and the asymptotic behavior of these correlations. The asymptotic relative efficiencies are considered to compare several popular correlations under symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Simulation and real data application are conducted to demonstrate the desirable performance of the two new symmetric Gini correlations.


Author(s):  
Joel E. Cohen ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44 , 2089–2097; p. 2091) speculated that ‘the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ·· ·’. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor’s Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances.


2003 ◽  
Vol 40 (03) ◽  
pp. 803-806
Author(s):  
Jinwen Chen

It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Konstantin Polev ◽  
Diana V. Kolygina ◽  
Kristiana Kandere-Grzybowska ◽  
Bartosz A. Grzybowski

Lysosomes—that is, acidic organelles known for degradation/recycling—move through the cytoplasm alternating between bursts of active transport and short, diffusive motions or even pauses. While their mobility is essential for lysosomes’ fusogenic and non-fusogenic interactions with target organelles, their movements have not been characterized in adequate detail. Here, large-scale statistical analysis of lysosomal movement trajectories reveals that lysosome trajectories in all examined cell types—both cancer and noncancerous ones—are superdiffusive and characterized by heavy-tailed distributions of run and flight lengths. Consideration of Akaike weights for various potential models (lognormal, power law, truncated power law, stretched exponential, and exponential) indicates that the experimental data are best described by the lognormal distribution, which, in turn, can be related to one of the space-search strategies particularly effective when “thorough” search needs to balance search for rare target(s) (organelles). In addition, automated, wavelet-based analysis allows for co-tracking the motions of lysosomes and the cargos they carry—particularly the nanoparticle aggregates known to cause selective lysosome disruption in cancerous cells. The methods we describe here could help study nanoparticle assemblies, viruses, and other objects transported inside various vesicle types, as well as coordinated movements of organelles/particles in the cytoplasm. Custom-written code that includes integrated workflow for our analyses is made available for academic use.


1997 ◽  
Vol 27 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Colin M. Ramsay ◽  
Miguel A. Usabel

AbstractWhen claims in the compound Poisson risk model are from a heavy-tailed distribution (such as the Pareto or the lognormal), traditional techniques used to compute the probability of ultimate ruin converge slowly to desired probabilities. Thus, faster and more accurate methods are needed. Product integration can be used in such situations to yield fast and accurate estimates of ruin probabilities because it uses quadrature weights that are suited to the underlying distribution. Tables of ruin probabilities for the Pareto and lognormal distributions are provided.


2020 ◽  
Author(s):  
Verda Davasligil Atmaca ◽  
Burcu Mestav

The distribution of the financial return series is unsuitable for normal distribution. The distribution of financial series is heavier than the normal distribution. In addition, parameter estimates obtained in the presence of outliers are unreliable. Therefore, models that allow heavy-tailed distribution should be preferred for modelling high kurtosis. Accordingly, univariate and multivariate stochastic volatility models, which allow heavy-tailed distribution, have been proposed to model time-varying volatility. One of the multivariate stochastic volatility (MSVOL) model structures is factor-MSVOL model. The aim of this study is to investigate the convenience of Bayesian estimation of additive factor-MSVOL (AFactor-MSVOL) models with normal, heavy-tailed Student-t and Slash distributions via financial return series. In this study, AFactor-MSVOL models that allow normal, Student-t, and Slash heavy-tailed distributions were estimated in the analysis of return series of S&P 500 and SSEC indices. The normal, Student-t, and Slash distributions were assigned to the error distributions as the prior distributions and full conditional distributions were obtained by using Gibbs sampling. Model comparisons were made by using DIC. Student-t and Slash distributions were shown as alternatives of normal AFactor-MSVOL model.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 171-192 ◽  
Author(s):  
Witold G. Strupczewski ◽  
Krzysztof Kochanek ◽  
Iwona Markiewicz ◽  
Ewa Bogdanowicz ◽  
Stanislaw Weglarczyk ◽  
...  

This study discusses an application of heavy-tailed distributions to modelling of annual peak flows in general and of Polish data sets in particular. One- and two-shape parameter heavy-tailed distributions are obtained by transformations of random variables. The correct selection of a flood frequency model with emphasis on heavy-tailed distribution discrimination is then discussed. If a distribution is wrongly assumed, the error, in the upper quantile, arising as a result, depends on the method of parameter estimation and is shown analytically for three methods. Asymptotic and sampling values (got by simulation) were assessed for the pair log-Gumbel (LG) as a false distribution and log-normal (LN) as a true distribution. Comparing the upper quantiles of various distributions with the same values of moments, it is found that heavy-tailed distributions do not consistently provide higher flood frequency estimates than do soft-tailed distributions. Based on L-moment ratio diagrams and the test of linearity on log–log plots, it is concluded that Polish datasets of annual peak flows should be modelled using soft-tailed distributions, such as the three-parameter Inverse Gaussian, rather than heavy-tailed distributions.


Sign in / Sign up

Export Citation Format

Share Document