scholarly journals Two symmetric and computationally efficient Gini correlations

2020 ◽  
Vol 8 (1) ◽  
pp. 373-395
Author(s):  
Courtney Vanderford ◽  
Yongli Sang ◽  
Xin Dang

AbstractStandard Gini correlation plays an important role in measuring the dependence between random variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmetric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored. The influence function approach is utilized to study the robustness and the asymptotic behavior of these correlations. The asymptotic relative efficiencies are considered to compare several popular correlations under symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Simulation and real data application are conducted to demonstrate the desirable performance of the two new symmetric Gini correlations.

2018 ◽  
Vol 10 (04) ◽  
pp. 1850009 ◽  
Author(s):  
Gamze Ozel ◽  
Emrah Altun ◽  
Morad Alizadeh ◽  
Mahdieh Mozafari

In this paper, a new heavy-tailed distribution is used to model data with a strong right tail, as often occuring in practical situations. The proposed distribution is derived from the log-normal distribution, by using odd log-logistic distribution. Statistical properties of this distribution, including hazard function, moments, quantile function, and asymptotics, are derived. The unknown parameters are estimated by the maximum likelihood estimation procedure. For different parameter settings and sample sizes, a simulation study is performed and the performance of the new distribution is compared to beta log-normal. The new lifetime model can be very useful and its superiority is illustrated by means of two real data sets.


2018 ◽  
Vol 46 (7) ◽  
pp. 1281-1296 ◽  
Author(s):  
Patrick Erik Bradley ◽  
Martin Behnisch

The question of inferring the owner of a set of building stocks (e.g. from which country the buildings are taken) from building-related quantities like number of buildings or types of building event histories necessitates the knowledge of their distributions in order to compare them. If the distribution function is a power law, then a version of the 80/20 rule can be applied to describe the variable. This distribution is an example of a heavy-tailed distribution; another example is the log-normal distribution. Heavy-tailed distributions have the property that studying the effects of the few large values already yields most of the overall effect of the whole quantity. For example, if reducing the CO2 emissions of the buildings of a country is the issue, then in case of a heavy-tailed distribution, only the effects of the relatively few large cities need to be considered. It is shown that the number of buildings in German municipalities or counties or the number of building-related event histories of a certain vanished building stock follow a heavy-tailed distribution and give evidence for the type of underlying distribution. The methodology used is a recent statistical framework for discerning power law and other heavy-tailed distributions in empirical data.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Mohsen Maleki ◽  
Javier Contreras-Reyes ◽  
Mohammad Mahmoudi

In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by Branco and Dey (2001). Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.


2019 ◽  
Vol 7 (1) ◽  
pp. 394-417
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard

AbstractWe introduce a location-scale model for conditional heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the location and scale functions are introduced. Second, an estimator of the conditional extreme-value index is derived. The asymptotic properties of the estimators are established under mild assumptions and their finite sample properties are illustrated both on simulated and real data.


2002 ◽  
Vol 32 (1) ◽  
pp. 43-55 ◽  
Author(s):  
K.W. Ng ◽  
Q.H. Tang ◽  
H. Yang

AbstractIn this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to the case of random sums. Applications to some commonly used risk processes are proposed. All heavy-tailed distributions involved in this paper are supposed on the whole real line.


2017 ◽  
Vol 12 (2) ◽  
pp. 412-432 ◽  
Author(s):  
Leonardo Rojas-Nandayapa ◽  
Wangyue Xie

AbstractWe consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable Y and a non-negative but otherwise arbitrary random variable S called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable S has discrete support – such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mi Zichuan ◽  
Saddam Hussain ◽  
Anum Iftikhar ◽  
Muhammad Ilyas ◽  
Zubair Ahmad ◽  
...  

During the past couple of years, statistical distributions have been widely used in applied areas such as reliability engineering, medical, and financial sciences. In this context, we come across a diverse range of statistical distributions for modeling heavy tailed data sets. Well-known distributions are log-normal, log-t, various versions of Pareto, log-logistic, Weibull, gamma, exponential, Rayleigh and its variants, and generalized beta of the second kind distributions, among others. In this paper, we try to supplement the distribution theory literature by incorporating a new model, called a new extended Weibull distribution. The proposed distribution is very flexible and exhibits desirable properties. Maximum likelihood estimators of the model parameters are obtained, and a Monte Carlo simulation study is conducted to assess the behavior of these estimators. Finally, we provide a comparative study of the newly proposed and some other existing methods via analyzing three real data sets from different disciplines such as reliability engineering, medical, and financial sciences. It has been observed that the proposed method outclasses well-known distributions on the basis of model selection criteria.


2019 ◽  
Vol 09 (04) ◽  
pp. 2150001
Author(s):  
Yong He ◽  
Hao Sun ◽  
Jiadong Ji ◽  
Xinsheng Zhang

In this paper, we innovatively propose an extremely flexible semi-parametric regression model called Multi-response Trans-Elliptical Regression (MTER) Model, which can capture the heavy-tail characteristic and tail dependence of both responses and covariates. We investigate the feature screening procedure for the MTER model, in which Kendall’ tau-based canonical correlation estimators are proposed to characterize the correlation between each transformed predictor and the multivariate transformed responses. The main idea is to substitute the classical canonical correlation ranking index in [X. B. Kong, Z. Liu, Y. Yao and W. Zhou, Sure screening by ranking the canonical correlations, TEST 26 (2017) 1–25] by a carefully constructed non-parametric version. The sure screening property and ranking consistency property are established for the proposed procedure. Simulation results show that the proposed method is much more powerful to distinguish the informative features from the unimportant ones than some state-of-the-art competitors, especially for heavy-tailed distributions and high-dimensional response. At last, a real data example is given to illustrate the effectiveness of the proposed procedure.


Sign in / Sign up

Export Citation Format

Share Document