scholarly journals Specificity of the glial fibrillary acidic protein for astroglia.

1977 ◽  
Vol 25 (6) ◽  
pp. 466-469 ◽  
Author(s):  
A Bignami ◽  
D Dahl

Glial fibrillary acidic protein (GFA) is the main constituent of glial filaments and the close similarity of GFA and neurofilament protein has been recently reported. However, the immunofluorescence staining of peripheral nerve which may be observed with GFA antisera is not due to cross-reaction between GFA and neurofilament protein. Staining of peripheral axons was also observed with control sera obtained by injecting the rabbits with nonimmunogenic GFA preparations isolated with the same procedure. Immune GFA antisera and control sera reacted with sodium dodecyl sulfate extracts of sciatic nerve. However, the precipitin line formed with peripheral nerve crossed the line against GFA protein, thus indicating nonidentity between the two antigens. Buffer extract of sciatic nerves that had been incubated with spinal cord reacted by immunodiffusion with GFA antisera, thus indicating that redistribution of GFA occurred under these conditions.

1992 ◽  
Vol 14 (5-6) ◽  
pp. 351-356 ◽  
Author(s):  
H. Chen ◽  
P. Sun ◽  
E. Parmantier ◽  
F. Cabon ◽  
P. Dupouey ◽  
...  

1986 ◽  
Vol 6 (5) ◽  
pp. 1529-1534 ◽  
Author(s):  
S A Lewis ◽  
N J Cowan

The origin of introns and their role (if any) in gene expression, in the evolution of the genome, and in the generation of new expressed sequences are issues that are understood poorly, if at all. Multigene families provide a favorable opportunity for examining the evolutionary history of introns because it is possible to identify changes in intron placement and content since the divergence of family members from a common ancestral sequence. Here we report the complete sequence of the gene encoding the 68-kilodalton (kDa) neurofilament protein; the gene is a member of the intermediate filament multigene family that diverged over 600 million years ago. Five other members of this family (desmin, vimentin, glial fibrillary acidic protein, and type I and type II keratins) are encoded by genes with six or more introns at homologous positions. To our surprise, the number and placement of introns in the 68-kDa neurofilament protein gene were completely anomalous, with only three introns, none of which corresponded in position to introns in any characterized intermediate filament gene. This finding was all the more unexpected because comparative amino acid sequence data suggest a closer relationship of the 68-kDa neurofilament protein to desmin, vimentin, and glial fibrillary acidic protein than between any of these three proteins and the keratins. It appears likely that an mRNA-mediated transposition event was involved in the evolution of the 68-kDa neurofilament protein gene and that subsequent events led to the acquisition of at least two of the three introns present in the contemporary sequence.


1986 ◽  
Vol 6 (5) ◽  
pp. 1529-1534
Author(s):  
S A Lewis ◽  
N J Cowan

The origin of introns and their role (if any) in gene expression, in the evolution of the genome, and in the generation of new expressed sequences are issues that are understood poorly, if at all. Multigene families provide a favorable opportunity for examining the evolutionary history of introns because it is possible to identify changes in intron placement and content since the divergence of family members from a common ancestral sequence. Here we report the complete sequence of the gene encoding the 68-kilodalton (kDa) neurofilament protein; the gene is a member of the intermediate filament multigene family that diverged over 600 million years ago. Five other members of this family (desmin, vimentin, glial fibrillary acidic protein, and type I and type II keratins) are encoded by genes with six or more introns at homologous positions. To our surprise, the number and placement of introns in the 68-kDa neurofilament protein gene were completely anomalous, with only three introns, none of which corresponded in position to introns in any characterized intermediate filament gene. This finding was all the more unexpected because comparative amino acid sequence data suggest a closer relationship of the 68-kDa neurofilament protein to desmin, vimentin, and glial fibrillary acidic protein than between any of these three proteins and the keratins. It appears likely that an mRNA-mediated transposition event was involved in the evolution of the 68-kDa neurofilament protein gene and that subsequent events led to the acquisition of at least two of the three introns present in the contemporary sequence.


Cancer ◽  
1991 ◽  
Vol 68 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Hadassa Goldberg-Stern ◽  
Natan Gadoth ◽  
Sidi Stern ◽  
Uri Sandbank ◽  
Ian J. Cohen ◽  
...  

1996 ◽  
Vol 33 (4) ◽  
pp. 391-397 ◽  
Author(s):  
J. Pérez ◽  
M. J. Bautista ◽  
E. Rollón ◽  
F. Chacón-M. de Lara ◽  
L. Carrasco ◽  
...  

The immunohistochemical expression of muscle actin has been studied in 45 canine hemangiopericytomas (CHP) using a monoclonal antibody (HHF35) and formalin-fixed, paraffin-embedded specimens. The distribution of vimentin, desmin, cytokeratins, lysozyme, factor VIII-related antigen, S-100 protein, and glial fibrillary acidic protein was studied both in CHP and in some canine soft-tissue neoplasms (seven fibrosarcomas, seven benign schwannomas, seven benign fibrous histiocytomas, and six leiomyosarcomas) used as controls for differential diagnosis. All CHP and control tumors expressed vimentin. Twenty-three CHP expressed muscle actin, whereas all control tumors analyzed were muscle actin-negative, with the exception of leiomyosarcomas. Among muscle actin- and vimentin-positive CHP, one case could be reclassified as leiomyosarcoma because it was desmin-positive, two cases expressed lysozyme, and nine cases expressed S-100 protein. Among muscle actin-negative and vimentin-positive CHP, seven expressed S-100 protein. In addition, S-100 protein was detected in five schwannomas. All CHP and control tumors analyzed were negative for cytokeratins, factor VIII-related antigen, and glial fibrillary acidic protein. Our results support the hypothesis of a pericytic origin of CHP, and suggest that muscle actin, desmin, vimentin, and lysozyme could be useful for the differential diagnosis of canine spindle cell tumors, but not all these neoplasms can be identified with these tumor tissue markers.


2004 ◽  
Vol 9 (2) ◽  
pp. 113-113
Author(s):  
SC Previtali ◽  
G Dina ◽  
G Galizia ◽  
C Malaguti ◽  
S Amadio ◽  
...  

2009 ◽  
Vol 111 (3) ◽  
pp. 492-496 ◽  
Author(s):  
Shigeo Ohba ◽  
Kazunari Yoshida ◽  
Yuichi Hirose ◽  
Eiji Ikeda ◽  
Yoichi Nakazato ◽  
...  

This 32-year-old woman, 27 weeks pregnant, harbored a cystic mass with a solid component in the left frontal lobe. Histologically, the lesion was hypercellular and contained a diffuse sheet of eosinophilic cells of various sizes. The cells were almost round and had a few prominent, eccentrically placed, hyperchromatic nuclei of various sizes. Immunohistochemically, the tumor was reactive for vimentin, epithelial membrane antigen, cytokeratin AE1/AE3, smooth muscle actin, and BAF47/INI-1, and negative for glial fibrillary acidic protein, neurofilament protein, S100 protein, CK7, CK20, HMB-45, MIC2, and Bcl-2. The Ki 67 labeling index was 4.2%. Comparative genomic hybridization analysis revealed aberrations of the chromosomal copy number of +7 and −10. This tumor could not be categorized according to the present World Health Organization classification. Results of staining with glial fibrillary acidic protein were not consistent with a glioma, and staining with INI-1 was inconsistent with atypical teratoid/rhabdoid tumor. The tumor was therefore designated as a “cerebral tumor with extensive rhabdoid features.”


Sign in / Sign up

Export Citation Format

Share Document