Analysis of finishing forces and surface finish during magnetorheological abrasive flow finishing of asymmetric workpieces

2019 ◽  
Vol 2 (2) ◽  
pp. 133-151 ◽  
Author(s):  
Jayant ◽  
V. K. Jain

Magnetorheological abrasive flow finishing (MRAFF) is an advanced hybrid process for producing ultrafine finished surfaces. Such surfaces reduce frictional forces and thereby minimize wear and tear to increase functional lifetime of the components. In the present research work, a model has been developed for simulating the results of MRAFF process. First, magnetic field is simulated and then a detailed study on the rheology of the magnetorheological polishing (MRP) fluid is conducted to develop a viscosity model for the flow of non-Newtonian shear thinning fluid. To calculate the forces acting in the process of material removal, the flow of MRP fluid around an asymmetric workpiece (knee joint) in a spatially varying magnetic field is simulated. Finishing forces exerted by the abrasive particles on the workpiece surface are analysed to develop a model for predicting surface roughness. A methodology has been proposed to evolve a variable correction factor to determine active abrasive particles at different locations on the workpiece surface for accurate simulation of surface finish operation. It is found that the magnetic field greatly influences the process performance by governing the viscosity of the MRP fluid and the distribution of the abrasive particles in the medium. During finishing of an asymmetric workpiece, the surface finish obtained at different locations on the workpiece surface is different. The developed model is capable to predict final surface finish within the acceptable accuracy when compared with the experimental results.

Author(s):  
Guangchao Song ◽  
Bibek Poudel ◽  
Patrick Kwon ◽  
Haseung Chung ◽  
Zachary Detweiler ◽  
...  

Abstract Magnetic-Field Assisted Finishing (MAF) is a polishing process that utilizes a slurry mixture made of ferrous and abrasive particles in a liquid medium, known as a brush. The brush attached to a magnetic tool directly interacts with the surface of a workpiece and removes any imperfections and defects in the surface giving a smooth and nice surface finish. In this study, two distinct MAF setups were applied to the surface of chromium alloyed low carbon steel sheets to achieve the surface finish. The preliminary studies were conducted on one setup to understand the polishing behavior of the sheets and the other setup was designed to polish larger areas of the sheets to mimic the practical sheet producing environment. The effect of processing conditions such as types and sizes of abrasives, brush composition, and finishing time to attain the final surface roughness of the sheets was studied. The brush with the weight composition of 4:1:1.5 (iron: 3 μm black ceramic: silicone) was found to be the optimal condition for polishing the sheet metal samples. The optimal conditions obtained were applied to the larger scaled experimental setup. The final surface roughness of 38 nm and 220 nm were achieved in these experimental setups, respectively.


2020 ◽  
Vol 20 (1) ◽  
pp. 1-11
Author(s):  
Palwinder Singh ◽  
Lakhvir Singh ◽  
Sehijpal Singh

Abstract Magnetic abrasive flow finishing (MAFF) is an unconventional process capable of producing fine finishing with machining forces controlled by a magnetic field. This process can be utilized for hard to achieve inner surfaces through the activity of extrusion pressure, combined with abrasion activity of a magnetic abrasive powder (MAP) in a polymeric medium. MAP is the key component in securing systematic removal of material and a decent surface finish in MAFF. The research background disclosed various methods such as sintering, adhesive based, mechanical alloying, plasma based, chemical, etc. for the production of bonded MAP. This investigation proposes bonded MAP produced by mechanical alloying followed by heat treatment. The experiments have been conducted on aluminum tubes to investigate the influence of different parameters like magnetic field density, extrusion pressure and number of working cycles. The bonded magnetic abrasive powder used in MAFF is very effective to finish tubes’ inner surfaces and finishing is significantly improved after processing.


2021 ◽  
pp. 251659842110153
Author(s):  
Prashant Kumar ◽  
Rinku Mittal ◽  
Ramesh K. Singh ◽  
Suhas S. Joshi

Sapphire is an important ceramic material which finds applications in fields such as temperature sensing, optics, electronics, and ceramic bearings. Polishing of sapphire has always been a difficult task for industries and research communities. Hydrodynamic polishing (HDP) is one of the prominent methods used for polishing of hard and profiled surfaces, whereas rigid tool-based methods such as diamond turning, grinding, and honing have many limitations. The HDP process involves deterministic flow of abrasive particles in the slurry between the workpiece surface and a rotating soft tool to obtain the desired surface finish. A novel experimental setup has been fabricated to realize the conformal hydrodynamic nanopolishing on single crystal sapphire cavity. In this study, the experiments were conducted to understand the effect of abrasive particle size, basicity of slurry, and change in temperature of slurry on the polishing of machined sapphire cavity. The effect of the initial surface roughness of the machined cavity on conformal hydrodynamic nanopolishing has also been investigated. A microcrack/pit-free surface has been found after the final polishing of the sapphire cavity. An improvement of 21% is found in surface finish after the final polishing using abrasive particle size of 0.06 µm. Abrasive slurry with higher basicity (pH 13) does not improve the surface finish. By heating the abrasive slurry to a temperature of 70°C–75°C, surface finish improves by ∼26% as compared to improvement of ∼ 21% at room temperature polishing.


Author(s):  
Parvesh Ali ◽  
Ranganath M. S ◽  
R.S Walia ◽  
Q. Murtaza

Abrasive flow machining is a nonconventional process used for polishing of metallic components, internal inaccessible cavities or recesses using a semi liquid paste. It was developed to deburr, polish the surfaces having complex geometries and edges by flowing abrasive particles with a visco-elastic nonconductive media over them. Abrasive particle sharp cutting edges remove the material by abrasion mechanism from the workpiece surface. In the recent year, work has been carryout towards the development of abrasive flow machining for achieving the higher material removal and improved surface finish. This method has a unique property of simultaneous improvement in material removal and surface finish. In this paper authors discussed about various recent developments in abrasive flow machining with major objective of improving the productivity of the process.


2021 ◽  
pp. 251659842110157
Author(s):  
Chinu Kumari ◽  
Sanjay Kumar Chak

Magneto-rheological abrasive honing (MRAH) is an unconventional surface finishing technique that relies on abrasives mixed with a unique finishing fluid, which changes its characteristics on magnetic field application. This process imparts nanometric-level surface finish with a significant amount of uniformity. Rotating motion of the workpiece and continuous reciprocation of the finishing fluid in the MRAH process are recognized as the major aspects for adopting this process in finishing non-magnetic materials. The finishing obtained through the MRAH process relies on the workpiece’s material properties and process parameters such as concentration of abrasives in finishing fluid, rotational speed of the workpiece, and magnetic field strength/magnetizing current. To study the efficacy of MRAH process, a parametric study was conducted by performing few experiments on a brass workpiece. Design of experiment approach was adopted to plan the experiments, and the effect of different values of magnetizing current, the concentration of abrasives, and rotational speed on the surface finish were analyzed through the application of analysis of variance (ANOVA). From ANOVA, the rotational speed was found as the most significant parameter with a contribution of 48.90% on % reduction in roughness value (%∇Ra). Around 57% of roughness reduction was obtained at the optimized value of process parameters.


Atomic Energy ◽  
1960 ◽  
Vol 6 (6) ◽  
pp. 486-487
Author(s):  
D. P. Vasilevskaya ◽  
A. A. Glazov ◽  
V. I. Danilov ◽  
Yu. N. Denisov ◽  
V. P. Zhelepov ◽  
...  

2019 ◽  
Vol 18 (01) ◽  
pp. 157-166 ◽  
Author(s):  
Mithun Sarkar ◽  
V. K. Jain ◽  
Ajay Sidpara

Nanofinishing of complex surfaces is an important but costly processing step for many products for performing their functions satisfactorily. This paper deals with the development of a flexible abrasive tool for nanofinishing of complex surfaces. A flexible finishing tool similar to the ball end mill is developed by curing Polydimethylsiloxane (PDMS). A bowl-shaped copper workpiece is finished to nanometer surface roughness value. Different sizes of abrasive particles are used to reduce surface roughness value of the workpiece. A corrosion inhibitor is mixed with the abrasive slurry to protect the finished copper workpiece surface. A final surface roughness value of 50[Formula: see text]nm has been achieved with a variation up to 70[Formula: see text]nm on different locations of the bowl-shaped workpiece.


Author(s):  
Abdalslam Darafon ◽  
Andrew Warkentin ◽  
Robert Bauer

This paper presents a new empirical model of the dressing process in grinding which is then incorporated into a 3D metal removal computer simulator to numerically predict the ground surface of a workpiece as well as the dressed surface of the grinding wheel. The proposed model superimposes a ductile cutting dressing model with a grain fracture model to numerically generate the resulting grinding wheel topography and workpiece surface. Grinding experiments were carried out using “fine”, “medium” and “coarse” dressing conditions to validate both the predicted wheel topography as well as the workpiece surface finish. For the grinding conditions used in this research, it was observed that the proposed dressing model is able to accurately predict the resulting workpiece surface finish for all dressing conditions tested. Furthermore, similar trends were observed between the predicted and experimentally-measured grinding wheel topographies when plotting the cutting edge density, average cutting edge width and average cutting edge spacing as a function of depth for all dressing conditions tested.


Sign in / Sign up

Export Citation Format

Share Document