scholarly journals Finishing of Tubes using Bonded Magnetic Abrasive Powder in an Abrasive Medium

2020 ◽  
Vol 20 (1) ◽  
pp. 1-11
Author(s):  
Palwinder Singh ◽  
Lakhvir Singh ◽  
Sehijpal Singh

Abstract Magnetic abrasive flow finishing (MAFF) is an unconventional process capable of producing fine finishing with machining forces controlled by a magnetic field. This process can be utilized for hard to achieve inner surfaces through the activity of extrusion pressure, combined with abrasion activity of a magnetic abrasive powder (MAP) in a polymeric medium. MAP is the key component in securing systematic removal of material and a decent surface finish in MAFF. The research background disclosed various methods such as sintering, adhesive based, mechanical alloying, plasma based, chemical, etc. for the production of bonded MAP. This investigation proposes bonded MAP produced by mechanical alloying followed by heat treatment. The experiments have been conducted on aluminum tubes to investigate the influence of different parameters like magnetic field density, extrusion pressure and number of working cycles. The bonded magnetic abrasive powder used in MAFF is very effective to finish tubes’ inner surfaces and finishing is significantly improved after processing.

2019 ◽  
Vol 2 (2) ◽  
pp. 133-151 ◽  
Author(s):  
Jayant ◽  
V. K. Jain

Magnetorheological abrasive flow finishing (MRAFF) is an advanced hybrid process for producing ultrafine finished surfaces. Such surfaces reduce frictional forces and thereby minimize wear and tear to increase functional lifetime of the components. In the present research work, a model has been developed for simulating the results of MRAFF process. First, magnetic field is simulated and then a detailed study on the rheology of the magnetorheological polishing (MRP) fluid is conducted to develop a viscosity model for the flow of non-Newtonian shear thinning fluid. To calculate the forces acting in the process of material removal, the flow of MRP fluid around an asymmetric workpiece (knee joint) in a spatially varying magnetic field is simulated. Finishing forces exerted by the abrasive particles on the workpiece surface are analysed to develop a model for predicting surface roughness. A methodology has been proposed to evolve a variable correction factor to determine active abrasive particles at different locations on the workpiece surface for accurate simulation of surface finish operation. It is found that the magnetic field greatly influences the process performance by governing the viscosity of the MRP fluid and the distribution of the abrasive particles in the medium. During finishing of an asymmetric workpiece, the surface finish obtained at different locations on the workpiece surface is different. The developed model is capable to predict final surface finish within the acceptable accuracy when compared with the experimental results.


2021 ◽  
pp. 251659842110157
Author(s):  
Chinu Kumari ◽  
Sanjay Kumar Chak

Magneto-rheological abrasive honing (MRAH) is an unconventional surface finishing technique that relies on abrasives mixed with a unique finishing fluid, which changes its characteristics on magnetic field application. This process imparts nanometric-level surface finish with a significant amount of uniformity. Rotating motion of the workpiece and continuous reciprocation of the finishing fluid in the MRAH process are recognized as the major aspects for adopting this process in finishing non-magnetic materials. The finishing obtained through the MRAH process relies on the workpiece’s material properties and process parameters such as concentration of abrasives in finishing fluid, rotational speed of the workpiece, and magnetic field strength/magnetizing current. To study the efficacy of MRAH process, a parametric study was conducted by performing few experiments on a brass workpiece. Design of experiment approach was adopted to plan the experiments, and the effect of different values of magnetizing current, the concentration of abrasives, and rotational speed on the surface finish were analyzed through the application of analysis of variance (ANOVA). From ANOVA, the rotational speed was found as the most significant parameter with a contribution of 48.90% on % reduction in roughness value (%∇Ra). Around 57% of roughness reduction was obtained at the optimized value of process parameters.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 265
Author(s):  
Chun-Liang Chen ◽  
Sutrisna

Refractory high-entropy alloy (RHEA) is one of the most promising materials for use in high-temperature structural materials. In this study, the WMoNbTaV coatings on 304 stainless steel substrates has been prepared by mechanical alloying (MA). Effects of V addition and subsequent heat treatment on properties of the WMoNbTaV coatings were investigated. The results show that the RHEA coatings with nanocrystalline body-centered cubic (BCC) solid-solution phase were generated by the mechanical alloying process. The presence of the V element promotes a uniform microstructure and homogeneous distribution of composition in the RHEA coatings due to improving alloying efficiency, resulting in an increase of hardness. After the annealing treatment of the RHEA coatings, microstructure homogeneity was further enhanced; however, the high affinity of Ta for oxygen causes the formation of Ta-rich oxides. Annealing also removes strain hardening generated by high-energy ball milling and thus decreases the hardness of the RHEA coating and alters microstructure evolution and mechanical properties.


2017 ◽  
Vol 53 (11) ◽  
pp. 1-5 ◽  
Author(s):  
E. Maciazek ◽  
E. Malicka ◽  
M. Karolus ◽  
J. Panek ◽  
Z. Stoklosa ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 1409-1412 ◽  
Author(s):  
Tao Jiang

The Fe3Al/Al2O3 composites were fabricated by pressureless sintering process. The Fe3Al intermetallics compounds powders were fabricated by mechanical alloying and heat treatment, then the Fe3Al powders and Al2O3 powders were mixed and the Fe3Al/Al2O3 composite powders were prepared, so the Fe3Al/Al2O3 composites were fabricated by sintering process at 1700oC for 2h. The phase composition and microstructure of Fe3Al intermetallics compounds powders produced by mechanical alloying and heat treatment were investigated. The phase composition, microstructure and mechanical properties of the Fe3Al/Al2O3 composites sintered bulks were investigated. The XRD patterns results showed that there existed Fe3Al phase and Al2O3 phase in the sintered composites. The Fe3Al/Al2O3 composites sintered bulks exhibited the homogenous and compact microstructure, the Fe3Al particles were homogenously distributed in the Al2O3 matrix, the mean particles size of Fe3Al intermetallics was about 3-5μm. The Fe3Al/Al2O3 composites exhibited more homogenous and compact microstructure with the increase of Fe3Al content in the Al2O3 matrix. The density and relative density of the Fe3Al/Al2O3 composites increased gradually with the increase of Fe3Al content. The fracture strength and fracture toughness of the Fe3Al/Al2O3 composites increased gradually with the increase of Fe3Al content. The elastic modulus and hardness (HRA) of the Fe3Al/Al2O3 composites decreased gradually with the increase of Fe3Al content.


2007 ◽  
Vol 20 (7) ◽  
pp. 691-696 ◽  
Author(s):  
A Villaume ◽  
D Bourgault ◽  
L Porcar ◽  
A Girard ◽  
C E Bruzek ◽  
...  

2021 ◽  
Vol 63 (8) ◽  
pp. 705-713
Author(s):  
Ruth Acosta ◽  
Christian Boller ◽  
Markus Doktor ◽  
Haoran Wu ◽  
Hanna Jost ◽  
...  

Abstract In recent years, different short-time procedures have been developed that significantly reduce the experimental effort required to generate S-N curves and thus S-N databases. Methods like StressLife, StrainLife, and SteBLife are some of those which have shown enormous potential in this respect. In this contribution, the practicability of the SteBLife method is shown. Two S-N curve evaluation strategies based on temperature and magnetic field measurements are presented. These take statistical evaluation into account, describing a material’s scatter in terms of fatigue life. In order to demonstrate the versatility of the approach and to underline the advantages in terms of effort saved when compared to conventional procedures, the process on how to get the required information obtained is shown for three unalloyed and low-alloyed steels under different heat treatment conditions.


Author(s):  
Yan Cao ◽  
Majid Zarezadeh Mehrizi ◽  
Ali A. Rajhi ◽  
Sagr Alamri ◽  
Ali E. Anqi

2021 ◽  
Vol 316 ◽  
pp. 233-239
Author(s):  
Viktor N. Pustovoit ◽  
Yuri V. Dolgachev ◽  
Yu.M. Dombrovskii

During heat treatment of machine parts and tools, besides the usual task of ensuring a high complex of mechanical and operational properties, there is a problem of distortion of products in the process of heat treatment and the need for editing operations (which are carried out manually and require significant labor costs). The known methods do not solve the problem of removing distortion for thin-walled parts of the ring shape completely. This paper shows the technical possibility of using the energy of a constant magnetic field for the "internal" straightening of products during heat treatment in the temperature range of super-plasticity of transformation. The use of special equipment makes it possible to eliminate virtually the distortion of thin-walled parts of the ring shape and to improve their mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document