Stress analysis of bi-layered composite beam induced by piezoelectric actuator

2015 ◽  
Vol 19 (sup8) ◽  
pp. S8-114-S8-117
Author(s):  
S.-C. Her ◽  
H.-Y. Chen
2020 ◽  
Vol 86 (2) ◽  
pp. 44-53
Author(s):  
Yu. I. Dudarkov ◽  
M. V. Limonin

An engineering approach to estimation of the transverse shear stresses in layered composites is developed. The technique is based on the well-known D. I. Zhuravsky equation for shear stresses in an isotropic beam upon transverse bending. In general, application of this equation to a composite beam is incorrect due to the heterogeneity of the composite structure. According to the proposed method, at the first stage of its implementation, a transition to the equivalent model of a homogeneous beam is made, for which the Zhuravsky formula is valid. The transition is carried out by changing the shape of the cross section of the beam, provided that the bending stiffness and generalized elastic modulus remain the same. The calculated shear stresses in the equivalent beam are then converted to the stress values in the original composite beam from the equilibrium condition. The main equations and definitions of the method as well as the analytical equation for estimation of the transverse shear stress in a composite beam are presented. The method is verified by comparing the analytical solution and the results of the numerical solution of the problem by finite element method (FEM). It is shown that laminate stacking sequence has a significant impact both on the character and on the value of the transverse shear stress distribution. The limits of the applicability of the developed technique attributed to the conditions of the validity of the hypothesis of straight normal are considered. It is noted that under this hypothesis the shear stresses do not depend on the layer shear modulus, which explains the absence of this parameter in the obtained equation. The classical theory of laminate composites is based on the similar assumptions, which gives ground to use this equation for an approximate estimation of the transverse shear stresses in in a layered composite package.


2021 ◽  
Vol 1172 (1) ◽  
pp. 012005
Author(s):  
M H Elgohary ◽  
M I El-Geuchy ◽  
H M Abdallah ◽  
S S Sayed

2015 ◽  
Vol 786 ◽  
pp. 421-425
Author(s):  
R. Arravind ◽  
M. Saravanan ◽  
K. Balasubramanian

This paper discusses about the impact of fiber volume fraction on the bending behavior of a laminated composite beam. A two layered composite beam with upper layer made of glass fiber epoxy resin and reinforced with Kevlar at the bottom side of the beam is modeled and structural analysis is carried out. The analysis shows that the tensile strength increases with increase in fiber volume fraction. The compression strength decreases with increase in fiber volume fraction in the upper fiber where as increases in the bottom fiber and the obtained results are correlating with the experimental and analytical studies.


Sign in / Sign up

Export Citation Format

Share Document