Analysis of Bending Behavior of Laminated Composite Beam

2015 ◽  
Vol 786 ◽  
pp. 421-425
Author(s):  
R. Arravind ◽  
M. Saravanan ◽  
K. Balasubramanian

This paper discusses about the impact of fiber volume fraction on the bending behavior of a laminated composite beam. A two layered composite beam with upper layer made of glass fiber epoxy resin and reinforced with Kevlar at the bottom side of the beam is modeled and structural analysis is carried out. The analysis shows that the tensile strength increases with increase in fiber volume fraction. The compression strength decreases with increase in fiber volume fraction in the upper fiber where as increases in the bottom fiber and the obtained results are correlating with the experimental and analytical studies.

2017 ◽  
Vol 52 (8) ◽  
pp. 1089-1101 ◽  
Author(s):  
SMR Khalili ◽  
A Saeedi

The response of laminated hybrid composite beam with embedded shape memory alloy wires subjected to impact of multiple masses is analytically investigated. Two degree of freedom spring-mass system and Fourier series are used in order to study the low velocity impact phenomenon on the resulting hybrid composite beam. A linearized contact law is chosen to calculate the contact force history. The effect of pseudo elasticity of wires as well as the recovery stresses generated in shape memory alloy wires due to shape memory effect is investigated. The beam is subjected to impactors with various masses, radii, and initial velocities. Impacts are occurred on the top and/or bottom surface of the beam. The effects of volume fraction of shape memory alloy wires, location of embedded wires, location of impacts and pre-strain in shape memory alloy wires on the contact force history and the deflection curve of the beam are investigated. The obtained results illustrated that embedding shape memory alloy wires in the laminated composite beam caused the deflection of the beam to occur more local at the points of impact, in comparison with the beams without shape memory alloy wires. Moreover, embedding 0.2 volume fraction of the shape memory alloy wires reduced the maximum deflection of the beam subjected to impact of 2 impactor masses by 57% and 3 impactor masses (on both sides) by 12%. Pre-straining the wires caused more reduction in deflection of the beam under impact loading.


2011 ◽  
Vol 332-334 ◽  
pp. 735-738 ◽  
Author(s):  
Li Yan Liu ◽  
Yong Liang Han ◽  
Fei Zhang

This paper is aiming to research the impact behavior of flax fiber reinforced PP laminates considering the end use of the products. Flax yarn and Polypropylene (PP) filaments were twisted together with three fiber volume fraction 0.45, 0.50 and 0.60 to form the commingled yarns which were woven into fabrics as prepreg with plain and twill structures respectively. The prepregs of different layers were pressed into flax reinforced PP composites in the process of hot-pressing. The laminates with different fiber volume fraction, layer, and woven structure were tested and analyzed respectively aiming at the impact resistibility in succession. SEM micrograph of the impact fracutured surface was observed and analyzed as well. The results reveal that the impact properties of laminates with twill structures are prior to those of laminates with plain structures when other technical parameters are the same. The ability of impact resistibility of flax reinforced PP laminates improves with the increase of the fibre volume fraction, layer amount and impact velocity respectively in this research.


2021 ◽  
Vol 6 (1) ◽  
pp. 30-37
Author(s):  
Sri Hastuti ◽  
Herru Santosa Budiono ◽  
Diki Ilham Ivadiyanto ◽  
Muhammad Nurdin Nahar

Inovasi baru serat dari sabut kelapa dimanfaatkan untuk meningkatkan nilai ekonomis dari serat sabut kelapa, oleh karena itu dirancanglah pendayagunaan serat dari sabut kelapa untuk penguat komposit dengan material serat alam yang biodegradable. Hal ini untuk mendukung penggunaan komposit yang ramah terhadap lingkungan dan mengurangi penggunaan material komposit serat sintetis yang polutan. Tujuan penelitian adalah menganalisis sifat mekanik pada komposit serat alam bermaterial serat dari sabut kelapa yang ramah lingkungan. Metode penelitian pembuatan komposit berpenguat serat dari sabut kelapa dilakukan treatment NaOH 15% selama 5 jam dan fraksi volume serat 10 %, 15 %, dan 20 %. Komposit  serat dari sabut kelapa dengan matriks UPRs 157 BQTN dengan hardener MEXPO. Pengujian mekanik dilakukan uji bending menggunakan standar ASTM D790 dan uji impak  menggunakan standar ASTM D5941.  Pengujian impak komposit serat alam menunjukkan ketangguhan impak komposit pada fraksi volume serat 20% dengan nilai 0.017588J/mm2. Hasil pengujian menunjukkan peningkatan fraksi volume serta berpengaruh terhadap peningkatan kekuatan bending komposit serat dari sabut kelapa  dengan kekuatan optimum bending pada fraksi volume serat 10% dengan nilai 44,33N/mm2. Hal ini menunjukkan peningkatan fraksi volume serat dengan perendaman NaOH 15% akan meningkatkan sifat mekanik bending dan impak komposit. Perendaman NaOH memberikan pengaruh daya serap sabut kelapa terhadap matrik Unsaturated Polyester yang dapat meningkatkan daya rekat antara penguat serat dengan matrik sehingga meningkatkan sifat mekanik bending dan impak komposit. ABSTRACT The innovation of coco fiber is used to increase the economic value of coconut coir, therefore the utilization of coconut fiber for reinforcing composites with biodegradable natural fiber material is designed. This is to support the use of composites that are friendly to the environment and reduce the use of pollutant synthetic fiber composite materials. The research objective was to analyze the mechanical properties of natural fiber composites with environmentally friendly coconut fiber as material. The research method of making fiber-reinforced composites from coconut coir was carried out by 15% NaOH treatment for 5 hours and a fiber volume fraction of 10%, 15%, and 20%. Composite fiber from coconut coir with UPRs 157 BQTN matrix with MEXPO hardener. Mechanical testing is carried out using the ASTM D790 standard and the impact test using the ASTM D5941 standard. The impact test of natural fiber composites showed the impact toughness of the composite at a fiber volume fraction of 20% with a value of 0.017588 J/ mm2. The test results showed an increase in volume fraction and an effect on the increase in the bending strength of coconut fiber composites with the optimum bending strength at a fiber volume fraction of 10% with a value of 44.33N /mm2. This shows that the increase in fiber volume fraction by immersion in 15% NaOH will increase the bending mechanical properties and the impact of the composite. Soaking NaOH has an effect on the absorption power of coconut coir on the Unsaturated Polyester matrix which can increase the adhesion between the fiber reinforcement and the matrix thereby increasing the bending mechanical properties and impact of the composite.


2020 ◽  
Vol 857 ◽  
pp. 15-21
Author(s):  
Nesreen B. Najib ◽  
Shatha D. Mohammed ◽  
Wasan Z. Majeed ◽  
Nada Mahdi Fawzi A. Jalawi

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the compressive strength varies between (1.2-8.6)% for a period of (1-6) days, respectively. Although there was a decrease in the compressive strength for a state of non-zero volume fraction ratio (1 and 1.5) % varies between (1.0-3.1 and 0.4-1.6) %, respectively, the attained results indicated that gamma ray had no significant effect to reduce the compressive strength of the RPC that’s included micro steel fibers as a volume fraction.


2015 ◽  
Vol 22 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Ramazan-Ali Jafari-Talookolaei ◽  
Maryam Abedi ◽  
Mohammad H. Kargarnovin ◽  
Mohammad T. Ahmadian

AbstractThe free vibration analysis of generally laminated composite beam (LCB) with a delamination is presented using the finite element method (FEM). The effect of material couplings (bending-tension, bending-twist, and tension-twist couplings) with the effects of shear deformation, rotary inertia, and Poisson’s effect are taken into account. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with the results from available references and very good agreement observed. Furthermore, the effects of some parameters such as slenderness ratio, the rotary inertia, the shear deformation, material anisotropy, ply configuration, and delamination parameters on the natural frequency of the delaminated beam are examined.


The uses of laminated composite beams are increasing day by day in many industries. This laminated composite beam has been exposed under different dynamic loadings in mechanical operation. Therefore, the dynamic investigation of laminated composite beams (LCB) is very much necessary to forecast the catastrophe fail of the LCB components. At present, dynamic investigation of the LCB is carried out by the determining of fundamental frequency and mode shape. The special attentions like; in the design of geometry, orientation of fibres, layup of sections and boundary conditions are also analysed with referring the dynamical loadings and industry uses. The analysis procedures and results are validated with the reference results using finite element analysis software. Present research deals with the consequence of different volume fraction, boundary conditions and geometrical variation like aspect ratio, geometric ratio and length of E-glass polyester LCB. By altering different stacking sequences and these effects on mechanical properties as well as natural frequency are also analysed.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2543-2548
Author(s):  
SHIGEYUKI DATE ◽  
TETSURO KASAI

In this study, not only bending strength of Super-lightweight mortar (SLM) but also resistance to impact load of it, with several types of PVA fibers of different lengths and diameters, were investigated. It was shown that, when the diameter of the fiber decreased and fiber-volume fraction increased, bending strength and resistance to the impact load were generally improved. However, the effect of the performance improvement of the SLM showed the tendency to become small in mix proportion that has too large total surface area of fiber.


2014 ◽  
Vol 578-579 ◽  
pp. 501-504
Author(s):  
Guo Chao Wang ◽  
Bo Xin Wang

The incorporation of a small amount of steel fibers or fine polypropylene fibers in concrete can increase its impact resistance. But steel fiber has the problems of corrosion, high cost and high mess. The effect of fine polypropylene fibers in inhibiting the impact crack is not effective. The research was taken to measure the properties of fresh concrete mixture of Synthetic Macro-fiber reinforced concrete. And investigated the influence of fiber length and volume fraction on the impact resistance of Synthetic Macro-fiber reinforced concrete. The results showed that these fibers could obviously improve the impact resistance of concrete. There was a best Synthetic Macro-fiber volume fraction. The length of the Synthetic Macro-fiber had a certain influence on the impact resistance of concrete.


Author(s):  
J. P. Anderson ◽  
M. C. Altan

An innovative manufacturing method, bladder assisted composite manufacturing (BACM), to fabricate geometrically complex, hollow parts made of polymeric composite materials is presented. Unlike the conventional bladder or diaphragm assisted curing processes, BACM uses an internally heated bladder to provide the consolidation pressure at the required cure temperature. The feasibility of this manufacturing method is demonstrated by fabricating laminated composite cylinders using multiple cure pressures and number of plies. The elastic moduli, failure strength, fiber volume fraction, and void contents of the cylinders were found to be comparable to the values obtained from flat laminates produced by hot plate molding of the same material. Compared to conventional bladder manufacturing methods, the BACM process reduced the energy required to cure the cylinders by almost 50% due to internal heating and insulated mold.


Sign in / Sign up

Export Citation Format

Share Document