Study of double oxide film defect behaviour in liquid Al–Mg alloys

2013 ◽  
Vol 26 (6) ◽  
pp. 330-338 ◽  
Author(s):  
S. Amirinejhad ◽  
R. Raiszadeh ◽  
H. Doostmohammadi
Author(s):  
Qi Chen ◽  
W. D. Griffiths

AbstractIn this work, Mo was added into Al melt to reduce the detrimental effect of double-oxide film defect. An air bubble was trapped in a liquid metal (2L99), served as an analogy for double-oxide film defect in aluminum alloy castings. It was found that the addition of Mo significantly accelerated the consumption of the entrapped bubble by 60 pct after holding for 1 hour. 2 sets of testbar molds were then cast, with 2L99 and 2L99+Mo alloy, with a badly designed running system, intended to deliberately introduce double oxide film defects into the liquid metal. Tensile testing showed that, with the addition of Mo, the Weibull modulus of the Ultimate Tensile Strength and pct Elongation was increased by a factor of 2.5 (from 9 to 23) and 2 (from 2.5 to 4.5), respectively. The fracture surface of 2L99+Mo alloy testbars revealed areas of nitrides contained within bi-film defects. Cross-sections through those defects by Focused Ion Beam milling suggested that the surface layer were permeable, which could be as thick as 30 μm, compared to around 500 nm for the typical oxide film thickness. Transmission Electron Microscopy analysis suggested that the nitride-containing layer consisted of nitride particles as well as spinel phase of various form. The hypothesis was raised that the permeability of the nitride layers promote the reaction between the entrapped atmosphere in the defect and the surrounding liquid metal, reducing the defect size and decreasing their impact on mechanical properties.


2007 ◽  
Vol 539-543 ◽  
pp. 305-310
Author(s):  
Hidetoshi Umeda ◽  
Goroh Itoh ◽  
Yoshinori Kato

The effect of the annealing atmosphere, the annealing temperature etc. on the hydrogen behavior in several Al-4% Mg alloys during heat treatment, was investigated. The results have shown that the hydrogen content in the as-cast slab is uniform, while the hydrogen content in the slab tends to be higher near the surface than in the interior after annealing. Such a tendency becomes more marked when annealing time is prolonged and Si and Fe content is lowered. The condensation of hydrogen near the surface can be seen only when it is annealed in a wet atmosphere. When annealed in a dry atmosphere, the hydrogen content near the surface becomes lower than in the center of the specimen. The hydrogen in Al-Mg alloys tends to be released to outside intrinsically at temperatures around 400°C and above. It is revealed that oxide film formed on the surface prevents the hydrogen from being released to outside.


Author(s):  
Shanguang Liu ◽  
Chuanbiao Luo ◽  
Guoai Li ◽  
Zheng Lu ◽  
Shenglong Dai

2019 ◽  
pp. 13-17
Author(s):  
Mahmoud Ahmed El-Sayed

Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also increase their scatter, making casting properties unreproducible and unreliable. Recent research has suggested that the nature of oxide film defects may change with time, as the air inside the bifilm would react with the surrounding melt leading to its consumption, which may enhance the mechanical properties of Al alloy castings. It was suggested that in a pure Al melt, oxygen within the bifilm atmosphere would be consumed first to form alumina, then nitrogen would react to from AlN. A CFD model of the heat distribution associated with the reactions between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy suggested that highly localized increases in temperature, up to 5000, could occur, over a scale of a few hundred micrometers. Such localized increases in temperature might lead to change the nature of the bifilm causing it to be less harmful to the properties of Al cast alloys.


1988 ◽  
Vol 38 (8) ◽  
pp. 496-512 ◽  
Author(s):  
Hideo YOSHIDA ◽  
Toshiyasu FUKUI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document