Grain refinement of solidified Mg–Al alloys by limited angular oscillation

2012 ◽  
Vol 28 (8) ◽  
pp. 941-947 ◽  
Author(s):  
H-M Guo ◽  
Y-Y Sheng ◽  
D-D Liu ◽  
W Xie ◽  
Z-P Ge ◽  
...  
2010 ◽  
Vol 667-669 ◽  
pp. 87-90
Author(s):  
Małgorzata Lewandowska ◽  
Henryk Dybiec ◽  
Mariusz Kulczyk ◽  
Jerzy Latuch ◽  
Krzysztof J. Kurzydlowski

The aim of the present work was to compare microstructures and mechanical properties of nano-Al alloys fabricated by two different methods: (i) SPD induced grain refinement, (ii) plastic consolidation of nano-powders or nano-crystalline ribbons. SPD grain refinement has been implemented by hydrostatic extrusion, HE. The ribbons were rapidly solidified using a melt spinning methods. Plastic consolidation of powder and ribbons was conducted by warm extrusion. The results of the studies show that by applying various fabrication routes for a given chemical composition, diverse nano-structures can be obtained, which differ in terms of grain size and shape, grain boundary character and dislocation density. As a result, the alloys also differ significantly in the mechanical properties. The findings are discussed in terms of the possibilities for optimizing properties of the bulk-nano-metals.


2010 ◽  
Vol 667-669 ◽  
pp. 379-384 ◽  
Author(s):  
X.H. An ◽  
Shi Ding Wu ◽  
Z.F. Zhang

The microstructural evolution and grain refinement of Cu-Al alloys with different stacking fault energies (SFEs) processed by equal-channel angular pressing (ECAP) were investigated. The grain refinement mechanism was gradually transformed from dislocation subdivision to twin fragmentation with tailoring the SFE of Cu-Al alloys. Concurrent with the transition of grain refinement mechanism, the grain size can be refined into from ultrafine region (1 m~100 nm) to the nanoscale (<100 nm) and then it is found that the minimum equilibrium grain size decreases in a roughly linear way with lowering the SFE. Moreover, in combination with the previous results, it is proposed that the formation of a uniform ultrafine microstructure can be formed more readily in the materials with high SFE due to their high recovery rate of dislocations and in the materials with low SFE due to the easy formation of a homogeneously-twinned microstructure.


2004 ◽  
Vol 51 (2) ◽  
pp. 125-129 ◽  
Author(s):  
P. Cao ◽  
Ma Qian ◽  
D.H. StJohn

2013 ◽  
Vol 765 ◽  
pp. 255-259
Author(s):  
Eraldo Pucina ◽  
Geoff de Looze ◽  
Dacian Tomus ◽  
Mark A. Easton ◽  
Andreas Schiffl ◽  
...  

This paper investigates the use of ultrasonic treatment on the grain refinement of Mg-Al alloys in castings similar to commercial gravity castings. It shows that it is a very effective form of grain refinement but it is limited spatially and by the advancing solidification front if partially-solidified product is washed into the die. It was found that the best way to obtain a homogeneous fine grain size through-out the casting was to combine a grain refining addition, SiC, with ultrasonic treatment during the initial stages of solidification.


2005 ◽  
Vol 488-489 ◽  
pp. 299-302 ◽  
Author(s):  
L. Lu ◽  
Arne K. Dahle ◽  
John A. Taylor ◽  
David H. StJohn

The fundamentals of grain refinement are reviewed with particular focus on magnesium alloys. This is followed by considerations of the theoretical and practical aspects of grain refinement of Mg-Al alloys by carbon-based grain refiners. Finally, experimental results using Al4C3 as a potential grain refiner are presented and discussed.


2000 ◽  
Vol 331-337 ◽  
pp. 391-396 ◽  
Author(s):  
Kenichi Yaguchi ◽  
Hiroyasu Tezuka ◽  
Tatsuo Sato ◽  
Akihiko Kamio

Sign in / Sign up

Export Citation Format

Share Document