First principle study of electronic structure and mechanical properties of Zr doped Al2Cu

2013 ◽  
Vol 29 (10) ◽  
pp. 1219-1224 ◽  
Author(s):  
Z. F. Xu ◽  
J. Z. Peng ◽  
X. Z. Feng
Author(s):  
Chunhai Lu ◽  
Wenkai Chen ◽  
Min Chen ◽  
Shijun Ni ◽  
Chengjiang Zhang

The local-density approximation (LDA) coupled with the virtual crystal approximation (VCA) method electronic structure is applied to evaluate elastic constants, bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio mechanic properties of metal zirconium, Zircaloy-2 and Zircaloy-4. The results show that there is no obvious difference in band structure and total density of state (DOS) between metal zirconium and zirconium alloy. However, p and d electron partial density of state (PDOS) presents the slight difference between metal zirconium and zirconium alloy. Zircaloy-2 and Zircaloy-4 present better elastic mechanical properties than metal zirconium. The metal zirconium and zirconium alloy show the anisotropic mechanical properties.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Liwen F Wan ◽  
Scott P Beckman

AbstractThe structural and electronic properties of AlMgB14 are investigated using ab initio methods. The impact of vacancies and electron doping on the crystal’s atomic and electronic structure is investigated. It is found that removing metal atoms does not influence the density of states, except for changes to the Fermi energy. The density of states of the off-stoichiometric Al0.75Mg0.75B14 crystal and the AlMgB14 crystal with five electrons removed are nearly identical. The removal of six electrons results in an 11% contraction in the crystal’s volume. This is associate with the removal of electrons from the B atoms’ 2p-states.


2019 ◽  
Vol 6 (11) ◽  
pp. 116320 ◽  
Author(s):  
Tong Zhang ◽  
Haiqing Yin ◽  
Cong Zhang ◽  
Zi Yang ◽  
Zhenghua Deng ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 618
Author(s):  
Layla Shafei ◽  
Puja Adhikari ◽  
Wai-Yim Ching

Clay mineral materials have attracted attention due to their many properties and applications. The applications of clay minerals are closely linked to their structure and composition. In this paper, we studied the electronic structure properties of kaolinite, muscovite, and montmorillonite crystals, which are classified as clay minerals, by using DFT-based ab initio packages VASP and the OLCAO. The aim of this work is to have a deep understanding of clay mineral materials, including electronic structure, bond strength, mechanical properties, and optical properties. It is worth mentioning that understanding these properties may help continually result in new and innovative clay products in several applications, such as in pharmaceutical applications using kaolinite for their potential in cancer treatment, muscovite used as insulators in electrical appliances, and engineering applications that use montmorillonite as a sealant. In addition, our results show that the role played by hydrogen bonds in O-H bonds has an impact on the hydration in these crystals. Based on calculated total bond order density, it is concluded that kaolinite is slightly more cohesive than montmorillonite, which is consistent with the calculated mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document