Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure

2004 ◽  
Vol 68 (2) ◽  
pp. 231-240 ◽  
Author(s):  
A. C. Roberts ◽  
P. C. Burns ◽  
R. A. Gault ◽  
A. J. Criddle ◽  
M. N. Feinglos

AbstractPetewilliamsite, ideally (Ni,Co)30(As2O7)15, monoclinic, space group C2, a = 33.256(5), b = 8.482(1), c = 14.191(2) Å, ß = 104.145(3)°, V = 3881.6(11) Å3, a:b:c = 3.9209:1:1.6731, Z = 2, is a new mineral found on a single nickeline-veined quartz specimen from Johanngeorgenstadt, Saxony, Germany. The mineral possesses a pronounced subcell-supercell: a (subcell) = 1/5 a (supercell); b (subcell) = b (supercell); c (subcell) = 1/3 c (supercell), and the strongest six lines of the X-ray powder-diffraction pattern are [d in Å (I) (hkl)]: 4.235(30)(020) ; 3.118(100)(513, 023); 3.005(60); 2.567(50); 1.637(50)(536 ); 1.507(30b)(553, ). It occurs predominantly as scattered patches of mm-sized aggregates which are intimately associated with varicoloured xanthiosite; additional associations include bunsenite, aerugite, rooseveltite, native bismuth, paganoite and two undefined arsenates. Subhedral equant crystals with rounded faces are intimately intergrown in 1 mm-sized aggregates and individual grains do not exceed 0.5 mm in maximum diameter. The average crystal size is variable from 20 μm to 0.3 mm. The colour varies from dark violet-red to dark brownish-red and the streak is pale reddish-brown to pale purplish-brown. Crystals are translucent, brittle, vitreous, and do not fluoresce under ultraviolet light. The mineral shows neither twinning nor cleavage, has an uneven fracture, and the calculated density (for the empirical formula) is 4.904 g/cm3. Electron-microprobe analyses gave NiO 19.45, CoO 18.39, CuO 3.40, CaO 0.17, FeO 0.04, As2O5 60.32, total 101.77 wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Ni14.662+Co13.822+Cu2.412+Ca0.17Fe0.032+)Σ31.09(As1.975+O7)15, based on O = 105 atoms per formula unit (a.p.f.u.). In reflected plane-polarized light in air, petewilliamsite is dark grey with orange to spectral (multicoloured) internal reflections and no obvious bireflectance, anisotropy or pleochroism. Measured reflectance values in air are tabulated; the index of refraction calculated at 589 nm is 1.88. The mineral name honours Professor Peter (‘Pete’) Allan Williams of the University of Western Sydney, New South Wales, Australia, for his contributions to the study of secondary minerals.The crystal structure of petewilliamsite has been solved by direct methods and refined on the basis of F2 using 9212 unique reflections measured with Mo-Kα X-radiation on a diffractometer equipped with a CCDbased detector. The final R1 was 7.68%, calculated for 1273 observed reflections. The structure contains 15 symmetrically distinct As5+ cations, each of which is tetrahedrally coordinated by four O atoms, and pairs of these AsO4 tetrahedra share a vertex which results in As2O7 pyroarsenate groups that are in layers parallel to (010). The structure also has 16 distinct transition-metal M (M: Ni,Co) sites of which there are one tetrahedral, four square bipyramidal, and 11 octahedral arrangements. Adjacent pyroarsenate groups are linked through bonds to M cations. The structure of petewilliamsite is not closely related to other naturally occurring arsenates and it is the first pyroarsenate mineral.

2010 ◽  
Vol 74 (1) ◽  
pp. 39-53 ◽  
Author(s):  
P. Elliott ◽  
J. Brugger ◽  
T. Caradoc-Davies

AbstractEdwardsite, Cu3Cd2(SO4)2(OH)6·4H2O, is a new mineral from the Block 14 Opencut, Broken Hill, New South Wales, Australia. It occurs as druses of tabular and bladed crystals up to 0.06 mm in size, associated with niedermayrite and christelite. Edwardsite is pale blue, transparent with vitreous lustre and has excellent cleavage parallel to {100}. Density was not measured but the calculated density, from the empirical formula, is 3.53 g cm–3 and the Mohs hardness is ∼3. Optically, it is biaxial negative with α ∼ 1.74, β = 1.762(4), γ ∼ 1.77 and 2Vcalc. ∼ +62°. The optical orientation is X = b, Y ∼ a, Z ∼ c. Electron microprobe analysis gave (wt.%): CdO 32.43, CuO 28.06, ZnO 2.26, FeO 0.08, SO3 20.35, H2Ocalc. (from crystal-structure analysis) 14.14, totalling 99.32. The empirical formula, calculated on the basis of 18 oxygen atoms is Cu2.77Cd1.98Zn0.22Fe0.01(SO4)2.00(OH)5.95·4.06H2O. Edwardsite is monoclinic, space group P21/c, with a = 10.863(2) Å, b = 13.129(3) Å, c = 11.169(2) Å, β = 113.04(3)°, V = 1465.9(5) Å3 (single-crystal data) and Z = 4. The eight strongest lines in the powder diffraction pattern are [d (Å), (I/I0), (hkl)]: 9.991, (90), (100); 5.001, (90), (200, 21); 4.591, (45), (20); 3.332, (60), (300, 032); 3.005, (30), (03); 2.824, (40), (2); 2.769, (55), (20, 042, 10); 2.670, (45), (2). The crystal structure was determined by direct methods and refined to R1 = 3.21% using 1904 observed reflections with Fo > 4σ(Fo) collected using synchrotron X-ray radiation (λ = 0.773418 Å). The structure is based on infinite sheets of edge-sharing Cuϕ6 (ϕ: O2–, OH) octahedra and Cdϕ7 (ϕ: O2–, H2O) polyhedra parallel to (100). The sheets are decorated on both sides by corner-sharing (SO4) tetrahedra, which also corner-link to isolated Cdϕ6 octahedra, thus connecting adjacent sheets. Moderate-strong to weak hydrogen bonding provides additional linkage between sheets.


2009 ◽  
Vol 73 (5) ◽  
pp. 817-824 ◽  
Author(s):  
R. Oberti ◽  
F. Cámaraite ◽  
F. C. Hawthorne ◽  
N. A. Ball

AbstractFluoro-aluminoleakeite, ideally , is a new mineral of the amphibole group from Norra Kärr, Sweden (IMA-CNMMNC 2009-012). It occurs in a proterozoic alkaline intrusion that mainly comprises a fine-grained schistose agpaitic nepheline-syenite (grennaite). Fluoro- aluminoleakeite occurs as isolated prismatic crystals 0.10–2 mm long in a syenitic matrix. Crystals are light greenish-blue with a greenish-blue streak. It is brittle, has a Mohs hardness of 6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage, no observable parting, and has a calculated density of 3.14 g cm–3. In plane-polarized light, it is pleochroic, X = pale green, Y = dark green, Z = pale green; X ^ a = 62.9° (in β obtuse), Y || b. Fluoro-aluminoleakeite is biaxial negative, α = 1.632(1), β = 1.638(1), γ = 1.643(1); 2Vobs. = 98.0(4)°, 2Vcalc. = 95.5°.MFluoro-aluminoleakeite is monoclinic, space group C2/m, a = 9.7043(5) Å, b = 17.7341(8) Å, c = 5.2833(3) Å, β = 104.067(4)°, V = 882.0(2) Å3, Z = 2. The eight strongest X-ray diffraction lines in the powder-diffraction pattern are [d in Å, (I), (hkl)]: 2.687, (100), (31, 151); 4.435, (80), (021, 040); 3.377, (80), (131); 2.527, (60), (02); 8.342, (50), (110); 3.096, (40), (310); 2.259, (40), (71, 12) and 2.557, (30), (002, 061). Analysis, by a combination of electron microprobe and crystal-structure refinement, gives SiO2 58.61, Al2O3 7.06, TiO2 0.32, FeO 3.27, Fe2O3 6.05, MgO 8.61, MnO 0.73, ZnO 0.43, CaO 0.05, Na2O 9.90, K2O 2.43, Li2O 1.62, F 3.37, H2Ocalc. 0.50, sum 101.08 wt.%. The formula unit, calculated on the basis of 24 (O,OH,F,Cl) p.f.u. with (OH) + F = 2 a.p.f.u., is A(Na0.65 O22W(F1.47OH0.53)Σ=2.00. Crystal-structure analysis shows CLi to be completely ordered at the M(3) site, and provided reliable site populations. Fluoro-aluminoleakeite is related to the end-member leakeite, , by the substitutions CFe3+ → CAl and WF → W(OH).


2012 ◽  
Vol 76 (5) ◽  
pp. 1119-1131 ◽  
Author(s):  
M. A. Cooper ◽  
Y. A. Abdu ◽  
N. A. Ball ◽  
F. C. Hawthorne ◽  
M. E. Back ◽  
...  

AbstractIanbruceite, ideally [Zn2(OH)(H2O)(AsO4)](H2O)2, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as thin platy crystals up to 80 μm long and a few μm thick, which form flattened aggregates up to 0.10 mm across, and ellipsoidal aggregates up to 0.5 mm across. It is associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite. Ianbruceite is sky blue to very pale blue with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. It has perfect cleavage parallel to (100), is flexible, and deforms plastically. The Mohs hardness is 1 and the calculated density is 3.197 g cm-3. The refractive indices are α = 1.601, β = 1.660, γ = 1.662, all ±0.002; 2Vobs = 18(2)°, 2Vcalc = 20°, and the dispersion is r < v, weak. Ianbruceite is monoclinic, space group P21/c, a = 11.793(2), b = 9.1138(14), c = 6.8265(10) Å, β = 103.859(9)°, V = 712.3(3) Å3, Z = 4, a:b:c = 1.2940:1:0.7490. The seven strongest lines in the X-ray powder diffraction pattern [d(Å), I, (hkl)] are as follows: 11.29, 100, (100); 2.922, 17, (130); 3.143, 15, (202); 3.744, 11, (300); 2.655, 9, (230); 1.598, 8, (152); 2.252, 7, (222). Chemical analysis by electron microprobe gave As2O5 36.27, As2O3 1.26, Al2O3 0.37, ZnO 49.72, MnO 0.32, FeO 0.71, K2O 0.25, H2Ocalc 19.89, sum 108.79 wt.%; the very high oxide sum is due to the fact that the calculated H2O content is determined from crystal-structure analysis, but H2O is lost under vacuum in the electron microprobe.The crystal structure of ianbruceite was solved by direct methods and refined to an R1 index of 8.6%. The As is tetrahedrally coordinated by four O anions with a mean As O distance of 1.687 Å. Zigzag [[5]Zn[6]Znϕ7] chains extend in the c direction and are linked in the b direction by sharing corners with (AsO4) tetrahedra to form slabs with a composition [Zn2(OH)(H2O)(AsO4)]. The space between these slabs is filled with disordered (H2O) groups and minor lone-pair stereoactive As3+. The ideal formula derived from chemical analysis and crystal-structure solution and refinement is [Zn2(OH)(H2O)(AsO4)](H2O)2.


2013 ◽  
Vol 77 (3) ◽  
pp. 353-366 ◽  
Author(s):  
M. A. Cooper ◽  
T. A. Husdal ◽  
N. A. Ball ◽  
Y. A. Abdu ◽  
F. C. Hawthorne

AbstractSchlüterite-(Y), ideally (Y,REE)2Al(Si2O7)(OH)2F, is a new silicate mineral species from the Stetind pegmatite, Tysfjord, Nordland, Norway. It forms dense, fibrous, radiating aggregates (up to ∼2 mm) diverging to individual needle-like crystals (up to ∼1 mm long) in cavities. Crystals are acicular to bladed, flattened on {001} and elongated along [010], and the dominant form is {001}. Schlüterite-(Y) is transparent, pale pink with a white streak and a vitreous lustre, and does not fluoresce under short-wave ultraviolet light. Mohs hardness is 5½–6, and schlüterite-(Y) is brittle with an irregular fracture, and has no cleavage. The calculated density is 4.644 g/cm3. The indices of refraction are α = 1.755, β = 1.760, γ = 1.770, all ± 0.005, 2Vobs = 71.8 (5)°, 2Vcalc = 71°, non-pleochroic, optic orientation is X ˆ a = 83.1° (β obtuse), Y//b, Z ˆ c = 50.3° (β acute). Schlüterite-(Y) is monoclinic, space group P21/c, a 7.0722(2), b 5.6198(1), c 21.4390(4) Å, β 122.7756(3)°, V 716.43(5) Å3, Z = 4. The seven strongest lines in the X-ray powder-diffraction pattern are as follows: [d (Å), I, (hkl)]: 4.769, 100, (012); 2.972, 55, (14); 3.289, 51, (112); 2.728, 49, (16); 2.810, 37, (020); 3.013, 37, ((16); 4.507, 36, (004). Chemical analysis by electron microprobe gave SiO2 22.64, Al2O3 9.45, Y2O3 15.35, La2O3 3.25, Ce2O3 9.69, Pr2O3 2.05, Nd2O3 9.50, Sm2O3 3.57, Gd2O3 4.65, Dy2O3 4.21, Er2O3 2.31, Yb2O3 1.86, F 2.71, H2Ocalc 3.78, O = F −1.14, sum 93.88 wt%. The H2O content was determined by crystal-structure analysis. On the basis of 10 anions with (OH) + F = 3 a.p.f.u. (atoms per formula unit), the empirical formula is (Y0.73Ce0.32Nd0.30Gd0.14Dy0.12La0.11Sm0.11Pr0.07Er0.06Yb0.05)Σ=2.01Al0.99Si2.01O7(OH)2.24F0.76. The crystal structure of schlüterite-(Y) was solved by direct methods and refined to an R1 index of 1.8% based on 1422 unique observed reflections. In the structure of schlüterite-(Y), Al(OH)4O2 octahedra share (OH)–(OH) edges to form [MΦ4] chains that are decorated by (Si2O7) groups that bridge O vertices of neighbouring octahedra in a staggered fashion on either side of the chain. These [Al(OH)2(Si2O7)] chains extend parallel to b, and are linked into a continuous framework via bonds to interstitial [8](Y,REE) (= <2.400 Å>) and [9](Y,REE) (= <2.548 Å>) atoms.


2002 ◽  
Vol 66 (2) ◽  
pp. 301-311 ◽  
Author(s):  
F. C. Hawthorne ◽  
M. A. Cooper ◽  
J. D. Grice ◽  
A. C. Roberts ◽  
N. Hubbard

AbstractBobkingite, ideally is a new mineral from the New Cliffe Hill Quarry, Stantonunder-Bardon, Leicestershire, England. It occurs as very thin (⩽5 µm) transparent plates up to 0.2 mm across, perched on a compact fibrous crust of malachite and crystalline azurite attached to massive cuprite. Crystals are tabular on {001} with dominant {001} and minor {100} and {110}. Bobkingite is a soft pale blue colour with a pale-blue streak, vitreous lustre and no observable fluorescence under ultraviolet light. It has perfect {001} and fair {100} cleavages, no observable parting, conchoidal fracture, and is brittle. Its Mohs' hardness is 3 and the calculated density is 3.254 g/cm3. Bobkingite is biaxial negative with α = 1.724(2), β = 1.745(2), γ = 1.750(2), 2Vγmeas = 33(6)°, 2Vcalc = 52°, pleochroism distinct, X = very pale blue, Z = pale greenish blue, X^a = 22° (in β obtuse), Y = c, Z = b. Bobkingite is monoclinic, space group C2/m, unit-cell parameters (refined from powder data): a = 10.301(8), b = 6.758(3), c = 8.835(7)Å, β = 111.53(6)°, V = 572.1(7)Å3, Z = 2. The seven strongest lines in the X-ray powder-diffraction pattern are [d (Å), I, (hkl)]: 8.199, 100, (001); 5.502, 100, (110); 5.029, 40, (2̄01); 2.883, 80, (310); 2.693, 40, (1̄13); 2.263, 40, (113), (4̄03); 2.188, 50, (2̄23). Chemical analysis by electron microprobe and crystal-structure solution and refinement gave CuO 70.46, Cl 12.71, H2O 19.19, O≡Cl –2.87, sum 99.49 wt.%, where the amount of H2O was determined by crystal-structure analysis. The resulting empirical formula on the basis of 12 anions (including 8 (OH) and 2H2O) is Cu4.99Cl2.02O10H12. The crystal structure was solved by direct methods and refined to an R index of 2.6% for 638 observed reflections measured with X-rays on a single crystal. Three distinct (Cuϕ6) (ϕ = unspecified anion) octahedra share edges to form a framework that is related to the structures of paratacamite and the Cu2(OH)3Cl polymorphs, atacamite and clinoatacamite. The mineral is named for Robert King, formerly of the Department of Geology, Leicester University, prominent mineral collector and founding member of the Russell Society. The mineral and its name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.


2014 ◽  
Vol 78 (3) ◽  
pp. 757-774 ◽  
Author(s):  
F. Cámara ◽  
M. E. Ciriotti ◽  
E. Bittarello ◽  
F. Nestola ◽  
F. Massimi ◽  
...  

AbstractThe new mineral species grandaite, ideally Sr2Al(AsO4)2(OH), has been discovered on the dump of Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy. Its origin is related to the reaction between the ore minerals and hydrothermal solutions. It occurs in thin masses of bright orange to salmon to brown coloured crystals, or infrequently as fan-like aggregates of small (<1 mm) crystals, with reddish-brown streak and waxy to vitreous lustre. Grandaite is associated with aegirine, baryte, braunite, hematite, tilasite, quartz, unidentified Mn oxides and Mn silicates under study.Grandaite is biaxial (+) with refractive indices α = 1.726(1), β = 1.731(1), γ = 1.752(1). Its calculated density is 4.378 g/cm3. Grandaite is monoclinic, space groupP21/m, witha= 7.5764(5),b= 5.9507(4),c= 8.8050(6) Å, β = 112.551(2)°,V= 366.62(4) Å3andZ= 2. The eight strongest diffraction lines of the observed X-ray powder diffraction pattern are [din Å, (I), (hkl)]: 3.194 (100)(11), 2.981 (50.9)(020), 2.922 (40.2)(03), 2.743 (31.4)(120), 2.705 (65.2)(112), 2.087 (51.8) (23), 1.685 (24.5)(321), 1.663 (27.7)(132). Chemical analyses by electron microprobe gave (wt.%) SrO 29.81, CaO 7.28, BaO 1.56, Al2O37.07, Fe2O32.34, Mn2O31.88, MgO 1.04, PbO 0.43, As2O544.95, V2O50.50, P2O50.09, sum 96.95; H2O 1.83 wt.% was calculated by stoichiometry from the results of the crystal-structure analysis. Raman and infrared spectroscopies confirmed the presence of (AsO4)3−and OH groups. The empirical formula calculated on the basis of 9 O a.p.f.u., in agreement with the structural results, is (Sr1.41Ca0.64Ba0.05Pb0.01)∑=2.11(Al0.68Fe0.143+Mn0.123+Mg0.13)∑=1.07[(As0.96V0.01)∑=0.97O4]2(OH), the simplified formula is (Sr,Ca)2(Al,Fe3+)(AsO4)2(OH) and the ideal formula is Sr2Al(AsO4)2(OH).The crystal structure was solved by direct methods and found to be topologically identical to that of arsenbrackebuschite. The structure model was refined on the basis of 1442 observed reflections toR1= 2.78%. In the structure of grandaite, chains of edge-sharingM3+octahedra run along [010] and share vertices with T5+tetrahedra, building up [M3+(T5+O4)2(OH, H2O)] units, which are connected through interstitial divalent cations. Grandaite is named after the informal appellation of the province where the type locality is located. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2013-059). The discovery of grandaite and of other members of the group (description still in progress) opens up the possibility of exploring the crystal chemistry of the brackebuschite supergroup.


1994 ◽  
Vol 58 (392) ◽  
pp. 417-424 ◽  
Author(s):  
Andrew C. Roberts ◽  
T. Scott Ercit ◽  
Alan J. Criddle ◽  
Gary C. Jones ◽  
R. Scott Williams ◽  
...  

AbstractMcalpineite, ideally Cu3TeO6·H2O, occurs as isolated 0.5 mm-sized emerald green cryptocrystalline crusts on white quartz at the long-abandoned McAlpine mine, Tuolumne County, California, U.S.A. Associated nonmetallic phases are muscovite (mariposite), calcite, goethite, hematite, chlorargyrite, choloalite, keystoneite, mimetite, malachite, azurite, annabergite and a host of unidentified crusts, both crystalline and amorphous. Associated metallic minerals include pyrite, acanthite, hessite, electrum, altaite, native silver, galena, pyrargyrite, sphalerite and owyheeite. The mineral has also been identified at the Centennial Eureka mine, Juab County, Utah, U.S.A., where it occurs as interstitial olive-green coatings and as millimetre-sized dark green-black cryptocrystalline nodules lining drusy quartz vugs. Associated minerals are xocomecatlite, hinsdalite-svanbergite, goethite and several new species including two hydrated copper tellurates, a hydrated copper-zinc tellurate/tellurite, and a hydrated copper-zinc tellurate/tellurite-arsenate-chloride. Mcalpineite is cubic, P-lattice (space group unknown), a = 9.555(2) Å, V = 872.4(4) Å. The strongest six lines in the X-ray powder-diffraction pattern [d in Å (I) (hkl)] are: 4.26(40)(210), 2.763(100)(222), 2.384(70)(400), 1.873(40)(431,510), 1.689(80)(440) and 1.440(60)(622). The average of four electron-microprobe analyses (McAlpine mine) is CuO 50.84, NiO 0.17, PbO 4.68, SiO2 0.65, TeO3 39.05, H2O (calc.) [4.51], total [100.00] wt. %. With O = 7, the empirical formula is (Cu2.79Pb0.09Ni0.01)∑2.89(Te0.97Si0.05)∑1.02O5.90·1.10H2O. This gives a calculated density of 6.65. g/cm3 for Z = 8. The average of two electron-microprobe analyses (Centennial Eureka mine) is CuO 51.2, ZnO 3.1, TeO3 39.0, SiO2 0.2, As2O5 0.8, H2O (by CHN elemental analyser) 7, total 101.3 wt. %, leading to the empirical formula (Cu2.56Zn0.15)∑2.71 (Te0.88Si0.02As0.02)∑0.92O5.47·1.53H2O. The infrared absorption spectrum shows definite bands for structural H2O with an O-H stretching frequency centred at 3320 cm−1 and a H-O-H flexing frequency centred at 1600 cm−1. In reflected light Mcalpineite is isotropic, nondescript grey, with ubiquitous brilliant apple to lime green internal reflections. The refractive index calculated from Fresnel equations is 2.01. Measured reflectance values in air and in oil are tabulated. Reflectance study also shows that cryptocrystalline aggregates are composed of micron-sized sheaves of fibrous or prismatic crystals. Other physical properties include: adamantine lustre; light green streak; brittle; uneven fracture; translucent to transparent and nonfluorescent under both long- and short-wave ultraviolet light. The name is for the first known locality, the McAlpine mine.


2006 ◽  
Vol 70 (3) ◽  
pp. 329-340 ◽  
Author(s):  
W. Krause ◽  
H.-J. Bernhardt ◽  
R.S.W. Braithwaite ◽  
U. Kolitsch ◽  
R. Pritchard

AbstractKapellasite, Cu3Zn(OH)6Cl2, is a new secondary mineral from the Sounion No. 19 mine, Kamariza, Lavrion, Greece. It is a polymorph of herbertsmithite. Kapellasite forms crusts and small aggregates up to 0.5 mm, composed of bladed or needle-like indistinct crystals up to 0.2 mm long. The colour is green-blue, the streak is light green-blue. There is a good cleavage parallel to ﹛0001﹜. Kapellasite is uniaxial negative, ω = 1.80(1), ε = 1.76(1); pleochroism is distinct, with E = pale green, O = green-blue. Dmeas = 3.55(10) g/cm3; Dcalc. = 3.62 g/cm3. Electron microprobe analyses of the type material gave CuO 58.86, ZnO 13.92, NiO 0.03, CoO 0.03, Fe2O3 0.04, Cl 16.70, H2O (calc.) 12.22, total 101.80, less O = Cl 3.77, total 98.03 wt.%. The empirical formula is (Cu3.24Zn0.75)Σ3.99(OH)5.94Cl2.06, based on 8 anions. The five strongest XRD lines are [d in Å (I/I0, hkl)] 5.730 (100, 001), 2.865 (11, 002), 2.730 (4, 200), 2.464 (9, 021/201), 1.976 (5, 022/202). Kapellasite is trigonal, space group Pml, unit-cell parameters (from single-crystal data) a = 6.300(1), c = 5.733(1) Å, V= 197.06(6) Å3, Z = 1. The crystal structure of kapellasite is based on brucite-like sheets parallel to (0001), built from edge-sharing distorted M(OH,Cl)6 (M = Cu, Zn) octahedra. The sheets stack directly on each other (…AAA… stacking). Bonding between adjacent sheets is only due to weak hydrogen and O…C1 bonds. The name is in honour of Christo Kapellas (1938–2004), collector and mineral dealer from Kamariza, Lavrion, Greece.


2013 ◽  
Vol 77 (7) ◽  
pp. 3039-3046 ◽  
Author(s):  
D. Topa ◽  
E. Makovicky ◽  
H. Tajedin ◽  
H. Putz ◽  
G. Zagler

AbstractBarikaite, ideally Pb10Ag3(Sb8As11)Σ19S40, is a new mineral species from the Barika Au-Ag deposit, Azarbaijan Province, western Iran. It was formed in fractures developed in silica bands situated in massive banded pyrite and baryte ores. These fractures house veinlets that contain a number of Ag-As-Sb-Pb-rich sulfosalts, tetrahedrite-tennantite, realgar, pyrite and electrum. Barikaite appears as inclusions in guettardite. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light barikaite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, in air) are: 37.0, 39.3 at 470 nm, 34.1, 36.9 at 546 nm, 33.1, 36.2 at 589 nm and 31.3, 34.1 at 650 nm. The Mohs hardness is 3–3½, microhardness VHN50 exhibits the range 192 – 212, with a mean value of 200 kg mm–2. The average results of five electron-microprobe analyses in a grain are (in wt.%): Pb 35.77(33), Ag 5.8(1), Tl 0.15(08), Sb 18.33(09), As 15.64(16), S 24.00(15), total 99.69(10) wt.%, corresponding to Pb9.31Ag2.90Tl0.04(Sb8.12As11.26)Σ19.36S40.37 (on the basis of 32Me + 40S = 72 a.p.f.u.). The simplified formula, Pb10Ag3(Sb8As11)Σ19S40, is in accordance with the results of a crystal-structure analysis, and requires Pb 37.89, Ag 5.91, Sb 17.79, As 15.05 and S 23.42 (wt.%). The variation of chemical composition is minor, the empirical formula ranging from Pb10.39Ag2.32Tl0.02Sb7.52As11.27S40.49 to Pb9.24Ag2.93Tl0.04Sb8.13As11.35S40.31. Barikaite has monoclinic symmetry, space group P21/n and unit-cell parameters a 8.5325(7) Å, b 8.0749(7) Å, c 24.828(2) Å, and b 99.077(6)o, Z = 1. Calculated density for the empirical formula is 5.34 (g cm–3). The strongest eight lines in the (calculated) powder-diffraction pattern [d in Å(I)(hkl)] are: 3.835(63)(022), 3.646(100)(016), 3.441(60)(212), 3.408(62)(14), 2.972(66)(16), 2.769(91)(222), 2.752(78)(24) and 2.133(54)(402). Barikaite is the N = 4 member of the sartorite homologous series with a near-equal role of As and Sb, which have an ordered distribution pattern in the structure. It is a close homeotype of rathite and more distantly related to dufrénoysite (both distinct, pure arsenian N = 4 members) and it completes the spectrum of Sb-rich members of the sartorite homologous series. The new mineral and its name have been approved by the IMA-CNMNC (IMA 2012-055).


2009 ◽  
Vol 73 (3) ◽  
pp. 487-494 ◽  
Author(s):  
R. Oberti ◽  
M. Boiocchi ◽  
N. A. Ball ◽  
F. C. Hawthorne

AbstractFluoro-sodic-ferropedrizite, ideally ANaBLi2C()TSi8O22WF2, is a new mineral of the amphibole group from the Sutlug River, Tuva Republic, Russia. It occurs at the endogenic contact of a Li-pegmatite with country rocks near to a diabase dyke and formed by reaction of the pegmatitic melt with the country rock. Fluoro-sodic-ferropedrizite occurs as prismatic to acicular crystals, ranging in length from 0.1–3 cm and widths of up to 50 μm. Crystals occur inparallel to sub-parallel aggregates up to 5 mm across ina matrix of calcite and plagioclase feldspar. Crystals are pale bluish-grey with a greyish-white streak.Fluoro-sodic-ferropedrizite is brittle, has a Mohs hardness of ~6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage, no observable parting, and has a calculated density of 3.116 g cm–3. In plane-polarized light, it is pleochroic, X = pale purple-grey, Y = light grey, Z = colourless; X ^ a = 71.2º (in β acute), Y || b, Z ^ c = 83.4º (in β obtuse). Fluoro-sodic-ferropedrizite is biaxial positive, α = 1.642(1), β = 1.644(1), γ = 1.652(1); 2V(obs) = 68.0(3)º, 2V(calc) = 56.4º. Fluoro-sodic-ferropedrizite is monoclinic, space group C2/m, a = 9.3720(4) Å, b = 17.6312(8) Å, c = 5.2732(3) Å, β = 102.247(4)º, V = 851.5(2) Å3, Z = 2. The strongest ten X-ray diffraction lines in the powder patternare (d in Å ,(I),(hkl)): 8.146,(10),(110); 2.686,(9),(151); 3.008,(8),(310); 4.430,(7),(021); 2.485,(6),(02); 3.383,(4),(131); 2.876,(3),(51, 11); 2.199,(3),(12); 4.030,(2),(111) and 3.795,(2),(31). Analysis by a combination of electron microprobe and crystal-structure refinement gives SiO2 59.81, Al2O3 12.66, TiO2 0.09, FeO 10.32, MgO 5.56, MnO 0.73, ZnO 0.17, CaO 0.20, Na2O 2.81, Li2O 4.80, F 2.43, H2Ocalc 1.10, sum = 99.65 wt.%. The formula unit, calculated on the basis of 24(O,OH,F) is A(Na0.68)B(Li1.92Na0.05Ca0.03)C() T(Si7.98Al0.02)O22W(F1.03OH0.97). Crystal-structure refinement shows Li to be completely ordered at the M(3) and M(4) sites. Fluoro-sodic-ferropedrizite, ideally ANaBLi2C()TSi8O22WF2, is related to the theoretical end-member ‘sodic-pedrizite’, ANaBLi2C(Mg2Al2Li)TSi8O22W(OH)2, by the substitutions CFe2+ → CMg and WF → W(OH).


Sign in / Sign up

Export Citation Format

Share Document