An ephemeral pentasodium phosphate carbonate from natrocarbonatite lapilli, Oldoinyo Lengai, Tanzania

2006 ◽  
Vol 70 (2) ◽  
pp. 211-218 ◽  
Author(s):  
R. H. Mitchell

AbstractLapilli formed by a Strombolian eruption are associated with the formation of a large lava flow of natrocarbonatite on or about 21–22 July, 2000 at Oldoinyo Lengai volcano, Tanzania. Fresh lapilli consist of vesicular natrocarbonatite similar to that occurring in rapidly quenched lavas. The lapilli were altered at low temperature (<50°C) by degassing to aggregates of sodian sylvite, potassian halite, trona, thermonatrite and a novel F-bearing sodium phosphate-carbonate. The latter is considered to be a new mineral as it has a composition (Na5–4.5PO4(CO3,F,Cl) that is not similar to that of nahpoite (Na2HPO4), dorfmanite [Na2(PO3OH).2H2O] or natrophosphate [Na7(PO4)2F.19H2O]. However, in common with these minerals, it is ephemeral and undergoes rapid decomposition under normal atmospheric conditions. The sodium phosphate-carbonate and associated halide-sodium carbonate assemblages are considered to be a part of a previously unrecognized hyperagpaitic assemblage forming as sublimates at Oldoinyo Lengai.

2008 ◽  
Vol 72 (5) ◽  
pp. 1083-1101 ◽  
Author(s):  
W. H. Paar ◽  
Y. Moëlo ◽  
N. N. Mozgova ◽  
N. I. Organova ◽  
C. J. Stanley ◽  
...  

AbstractCoiraite, ideally (Pb,Sn2+)12.5As3Fe2+Sn4+S28, occurs as an economically important tin ore in the large Ag-Sn-Zn polymetallic Pirquitas deposit, Jujuy Province, NW-Argentina. The new mineral species is the As derivative of franckeite and belongs to the cylindrite group of complex Pb sulphosalts with incommensurate composite-layered structures. It is a primary mineral, frequently found in colloform textures, and formed from hydrothermal solutions at low temperature. Associated minerals are franckeite, cylindrite, pyrite-marcasite, as well as minor amounts of hocartite, Ag-rich rhodostannite. arsenopyrite and galena. Laminae of coiraite consist of extremely thin bent platy crystals up to 50 urn long. Electron microprobe analysis (n = 31) gave an empirical formula Pb11.21As2.99Ag0.13Fe1.10Sn6.13S28.0 close to the ideal formula (Pb11.3Sn2+1.2)Σ=12.5As3Fe2+Sn4+S28. Coiraite has two monoclinic sub-cells, Q (pseudotetragonal) and H (pseudohexagonal). Q: a 5.84(1) Å, b 5.86(1) Å, c 17.32(1) Å, β 94.14(1)°, F 590.05(3) Å3, Z = 4, a:b:c = 0.997:1:2.955; H (orthogonal setting): a 6.28(1) Å, b 3.66(1) Å, c 17.33(1) Å, β 91.46(1)°, V398.01(6) Å3, Z = 2, a∶b∶c = 1.716∶1∶4.735. The strongest Debye-Scherrer camera X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 5.78, (20), (Q and H 003); 4.34, (40), (Q 004); 3.46, (30), (Q and H 005); 3.339, (20), (Q 104); 2.876, (100), (Q and H 006); 2.068, (60), (Q 220).


2021 ◽  
Vol 130 (8) ◽  
pp. 085303
Author(s):  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hideki Takagi ◽  
Hitoshi Umezawa ◽  
Eiji Higurashi

1951 ◽  
Vol 55 (482) ◽  
pp. 61-86
Author(s):  
P. L. Teed

The ubiquity of aircraft in being and yet to be, whether civil or military, manned or unmanned, makes them liable to exposure to wide extremes of atmospheric conditions. The range of temperature to which they may be subjected may possibly be from +90° to –90°C. (+194° to –130°F.), that of pressure, from one atmosphere to something approximating to one-tenth of this amount, while the water content (aqueous vapour plus water in suspension; for example, in a very dense tropical cloud), can, on occasion, be as high as 2.5 per cent. by weight and, at stratospheric heights, at least as low as 0.001 per cent. Such variations in ambient conditions are not without chemical and physical repercussions. The engineering problems which arise will be examined, therefore, from both these view points, and attention will be drawn to potential dangers and means suggested for their avoidance.


2020 ◽  
Vol 116 (14) ◽  
pp. 141602 ◽  
Author(s):  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hitoshi Umezawa ◽  
Koji Tanaka ◽  
Toshimitsu Ito ◽  
...  

1990 ◽  
Vol 54 (376) ◽  
pp. 495-500 ◽  
Author(s):  
Jan T. Szymański ◽  
Andrew C. Roberts

AbstractThe crystal structure of the new mineral voggite, Na2Zr(PO4)(CO3)(OH).2H2O , from the Francon quarry, Montreal, Quebec, Canada, has been solved in order to determine the correct chemical formula, as conventional electron microprobe methods were found unreliable. The unit cell is monoclinic, I2/m, with a = 12.261(2), b = 6.561(1), c = 11.757(2)Å, β = 116.19(2)°. The structure consists of layers of edge-sharing Zr-O pentagonal bipyramids, separated by layers of Na-(O,H2O) octahedra. The carbonate ion acts as a bidentate ligand in the Zr-O polyhedron, the third oxygen atom being bonded to the Na atom. The phosphate group is bonded to three different Zr atoms and to a Na atom. The Zr-O bond lengths vary from 2.067 to 2.283 (mean 2.140Å), while Na-O are between 2.304 and 2.773, (σ = 0.006Å, mean 2.480Å). The carbonate and phosphate bonds are normal. It is inferred from the structure that the columns of octahedrally coordinated Na atoms can easily be broken apart when subjected to the heat generated by the electron microprobe beam, with the subsequent expulsion of water. This gives rise to ‘mobile’ Na atoms, which make quantitative electron microprobe analysis extremely difficult. The structure allows the ‘liberated’ Na atoms to move freely within planes parallel to .


2013 ◽  
Vol 77 (4) ◽  
pp. 453-465 ◽  
Author(s):  
A. R. Kampf ◽  
S. J. Mills ◽  
B. P. Nash ◽  
R. M. Housley ◽  
G. R. Rossman ◽  
...  

AbstractCamaronesite (IMA 2012-094), [Fe3+(H2O)2(PO3OH)]2(SO4)·1–2H2O, is a new mineral from near the village of Cuya in the Camarones Valley, Arica Province, Chile. The mineral is a low-temperature, secondary mineral occurring in a sulfate assemblage with anhydrite, botryogen, chalcanthite, copiapite, halotrichite, hexahydrite, hydroniumjarosite, pyrite, römerite, rozenite and szomolnokite. Lavender-coloured crystals up to several mm across form dense intergrowths. More rarely crystals occur as drusy aggregates of tablets up to 0.5 mm in diameter and 0.02 mm thick. Tablets are flattened on {001} and exhibit the forms {001}, {104}, {015} and {018}. The mineral is transparent with white streak and vitreous lustre. The Mohs hardness is 2½, the tenacity is brittle and the fracture is irregular, conchoidal and stepped. Camaronesite has one perfect cleavage on {001}. The measured and calculated densities are 2.43(1) and 2.383 g/cm3, respectively. The mineral is optically uniaxial (+) with ω = 1.612(1) and ε = 1.621(1) (white light). The pleochroism is O (pale lavender) > E (colourless). Electron-microprobe analyses provided Fe2O331.84, P2O529.22, SO315.74, H2O 23.94 (based on O analyses), total 100.74 wt.%. The empirical formula (based on 2 P a.p.f.u.) is: Fe1.94(PO3OH)2(S0.96O4)(H2O)4·1.46H2O. The mineral is slowly soluble in concentrated HCl and extremely slowly soluble in concentrated H2SO4. Camaronesite is trigonal, R32, with cell parameters:a = 9.0833(5), c = 42.944(3) Å, V = 3068.5(3) Å3 and Z = 9. The eight strongest lines in the X-ray powder diffraction pattern are [dobs Å (I)(hkl)]: 7.74(45)(101), 7.415(100)(012), 4.545(72)(110), 4.426(26)(018), 3.862(32)(021,202,116), 3.298(93)(027,119), 3.179(25)(208) and 2.818(25)(1·1·12,125). In the structure of camaronesite (R1 = 2.28% for 1138 Fo > 4σF), three types of Fe octahedra are linked by corner sharing with (PO3OH) tetrahedra to form polyhedral layers perpendicular to c with composition [Fe3+(H2O)2(PO3OH)]. Two such layers are joined through SO4 tetrahedra (in two half-occupied orientations) to form thick slabs of composition [Fe3+(H2O)2(PO3OH)]2(SO4). Between the slabs are partially occupied H2O groups. The only linkages between the slabs are hydrogen bonds. The most distinctive component in the structure consists of two Fe octahedra linked to one another by three PO4 tetrahedra yielding an [Fe2(PO4)3] unit. This unit is also the key component in the sodium super-ionic conductor (NASICON) structure and has been referred to as the lantern unit. The polyhedral layers in the structure of camaronesite are similar to those in the structure of taranakite. The Raman spectrum exhibits peaks consistent with sulfate, phosphate, water and OH groups.


2009 ◽  
Vol 73 (3) ◽  
pp. 373-384 ◽  
Author(s):  
D. Wiedenmann ◽  
A. N. Zaitsev ◽  
S. N. Britvin ◽  
S. V. Krivovichev ◽  
J. Keller

AbstractAlumoåkermanite, (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), is a new mineral member of the melilite group from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, Tanzania. The mineral occurs as tabular phenocrysts and microphenocrysts in melilite-nephelinitic ashes and lapilli-tuffs. Alumoåkermanite is light brown in colour; it is transparent, with a vitreous lustre and the streak is white. Cleavages or partings are not observed. The mineral is brittle with an uneven fracture. The measured density is 2.96(2) g/cm3. The Mohs hardness is ~4.5–6. Alumoåkermanite is uniaxial (–) with ω = 1.635(1) and ε = 1.624–1.626(1). In a 30 mm thin section (+N), the mineral has a yellow to orange interference colour, straight extinction and positive elongation, and is nonpleochroic. The average chemical formula of the mineral derived from electron microprobe analyses is: (Ca1.48Na0.50Sr0.02 K0.01)(Si1.99Al0.01O7). Alumoåkermanite is tetragonal, space group P421m with a = 7.7661(4) Å, c = 5.0297(4) Å, V = 303.4(1) Å3 and Z = 2. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 3.712, (13), (111); 3.075, (25), (201); 2.859, (100), (211); 2.456, (32), (311); 1.757, (19), (312). Single-crystal structure refinement (R1 = 0.018) revealed structure topology typical of the melilite-group minerals, i.e. tetrahedral [(Al,Mg)(Si2O7)] sheets interleaved with layers of (CaNa) cations. The name reflects the chemical composition of the mineral.


Sign in / Sign up

Export Citation Format

Share Document